1 /*
2 * Copyright (c) 2018 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/kernel.h>
8 #include <zephyr/device.h>
9 #include <zephyr/drivers/gpio.h>
10 #include <zephyr/init.h>
11 #include <zephyr/ztest.h>
12 #include <zephyr/sys/printk.h>
13 #include <zephyr/linker/sections.h>
14 #include "abstract_driver.h"
15
16
17 #define DUMMY_PORT_1 "dummy"
18 #define DUMMY_PORT_2 "dummy_driver"
19 #define DUMMY_NOINIT "dummy_noinit"
20 #define BAD_DRIVER "bad_driver"
21 #define DUMMY_DEINIT "dummy_deinit"
22
23 #define MY_DRIVER_A "my_driver_A"
24 #define MY_DRIVER_B "my_driver_B"
25
26 #define FAKEDEFERDRIVER0 DEVICE_DT_GET(DT_PATH(fakedeferdriver_e7000000))
27 #define FAKEDEFERDRIVER1 DEVICE_DT_GET(DT_PATH(fakedeferdriver_e8000000))
28
29 #define FAKEDRIVER0_NODEID DT_PATH(fakedriver_e0000000)
30 #define FAKEDRIVER0_NODELABEL "fake_driver_label"
31
32 /* A device without init call */
33 DEVICE_DEFINE(dummy_noinit, DUMMY_NOINIT, NULL, NULL, NULL, NULL,
34 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);
35
36 /* To access from userspace, the device needs an API. Use a dummy GPIO one */
37 static DEVICE_API(gpio, fakedeferdriverapi);
38
39 /* Fake deferred devices */
40 DEVICE_DT_DEFINE(DT_INST(0, fakedeferdriver), NULL, NULL, NULL, NULL,
41 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);
42 DEVICE_DT_DEFINE(DT_INST(1, fakedeferdriver), NULL, NULL, NULL, NULL,
43 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
44 &fakedeferdriverapi);
45
46 /**
47 * @brief Test cases to verify device objects
48 *
49 * Verify zephyr device driver apis with different device types
50 *
51 * @defgroup kernel_device_tests Device
52 *
53 * @ingroup all_tests
54 *
55 * @{
56 */
57
58 /**
59 * @brief Test device object binding
60 *
61 * Validates device binding for an existing and a non-existing device object.
62 * It creates a dummy_driver device object with basic init and configuration
63 * information and validates its binding.
64 *
65 * Validates three kinds situations of driver object:
66 * 1. A non-existing device object.
67 * 2. An existing device object with basic init and configuration information.
68 * 3. A failed init device object.
69 *
70 * @ingroup kernel_device_tests
71 *
72 * @see device_get_binding(), DEVICE_DEFINE()
73 */
ZTEST(device,test_dummy_device)74 ZTEST(device, test_dummy_device)
75 {
76 const struct device *dev;
77
78 /* Validates device binding for a non-existing device object */
79 dev = device_get_binding(DUMMY_PORT_1);
80 zassert_is_null(dev);
81
82 /* Validates device binding for an existing device object */
83 dev = device_get_binding(DUMMY_PORT_2);
84 zassert_not_null(dev);
85
86 /* Validates device binding for an existing device object */
87 dev = device_get_binding(DUMMY_NOINIT);
88 zassert_not_null(dev);
89
90 /* device_get_binding() returns false for device object
91 * with failed init.
92 */
93 dev = device_get_binding(BAD_DRIVER);
94 zassert_is_null(dev);
95 }
96
97 /**
98 * @brief Test device binding for existing device
99 *
100 * Validates device binding for an existing device object.
101 *
102 * @see device_get_binding(), DEVICE_DEFINE()
103 */
ZTEST_USER(device,test_dynamic_name)104 ZTEST_USER(device, test_dynamic_name)
105 {
106 const struct device *mux;
107 char name[sizeof(DUMMY_PORT_2)];
108
109 snprintk(name, sizeof(name), "%s", DUMMY_PORT_2);
110 mux = device_get_binding(name);
111 zassert_true(mux != NULL);
112 }
113
114 /**
115 * @brief Test device binding for non-existing device
116 *
117 * Validates binding of a random device driver(non-defined driver) named
118 * "ANOTHER_BOGUS_NAME".
119 *
120 * @see device_get_binding(), DEVICE_DEFINE()
121 */
ZTEST_USER(device,test_bogus_dynamic_name)122 ZTEST_USER(device, test_bogus_dynamic_name)
123 {
124 const struct device *mux;
125 char name[64];
126
127 snprintk(name, sizeof(name), "ANOTHER_BOGUS_NAME");
128 mux = device_get_binding(name);
129 zassert_true(mux == NULL);
130 }
131
132 /**
133 * @brief Test device binding for passing null name
134 *
135 * Validates device binding for device object when given dynamic name is null.
136 *
137 * @see device_get_binding(), DEVICE_DEFINE()
138 */
ZTEST_USER(device,test_null_dynamic_name)139 ZTEST_USER(device, test_null_dynamic_name)
140 {
141 /* Supplying a NULL dynamic name may trigger a SecureFault and
142 * lead to system crash in TrustZone enabled Non-Secure builds.
143 */
144 #if defined(CONFIG_USERSPACE) && !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
145 const struct device *mux;
146 char *drv_name = NULL;
147
148 mux = device_get_binding(drv_name);
149 zassert_equal(mux, 0);
150 #else
151 ztest_test_skip();
152 #endif
153 }
154
155 __pinned_bss
156 static struct init_record {
157 bool pre_kernel;
158 bool is_in_isr;
159 bool is_pre_kernel;
160 bool could_yield;
161 } init_records[4];
162
163 __pinned_data
164 static struct init_record *rp = init_records;
165
166 __pinned_func
add_init_record(bool pre_kernel)167 static int add_init_record(bool pre_kernel)
168 {
169 rp->pre_kernel = pre_kernel;
170 rp->is_pre_kernel = k_is_pre_kernel();
171 rp->is_in_isr = k_is_in_isr();
172 rp->could_yield = k_can_yield();
173 ++rp;
174 return 0;
175 }
176
177 __pinned_func
pre1_fn(void)178 static int pre1_fn(void)
179 {
180 return add_init_record(true);
181 }
182
183 __pinned_func
pre2_fn(void)184 static int pre2_fn(void)
185 {
186 return add_init_record(true);
187 }
188
post_fn(void)189 static int post_fn(void)
190 {
191 return add_init_record(false);
192 }
193
app_fn(void)194 static int app_fn(void)
195 {
196 return add_init_record(false);
197 }
198
199 SYS_INIT(pre1_fn, PRE_KERNEL_1, 0);
200 SYS_INIT(pre2_fn, PRE_KERNEL_2, 0);
201 SYS_INIT(post_fn, POST_KERNEL, 0);
202 SYS_INIT(app_fn, APPLICATION, 0);
203
204 /* This is an error case which driver initializes failed in SYS_INIT .*/
null_driver_init(void)205 static int null_driver_init(void)
206 {
207 return -EINVAL;
208 }
209
210 SYS_INIT(null_driver_init, POST_KERNEL, 0);
211
212 /**
213 * @brief Test detection of initialization before kernel services available.
214 *
215 * Confirms check is correct.
216 *
217 * @see k_is_pre_kernel()
218 */
ZTEST(device,test_pre_kernel_detection)219 ZTEST(device, test_pre_kernel_detection)
220 {
221 struct init_record *rpe = rp;
222
223 zassert_equal(rp - init_records, 4U,
224 "bad record count");
225 rp = init_records;
226 while ((rp < rpe) && rp->pre_kernel) {
227 zassert_equal(rp->is_in_isr, false,
228 "rec %zu isr", rp - init_records);
229 zassert_equal(rp->is_pre_kernel, true,
230 "rec %zu pre-kernel", rp - init_records);
231 zassert_equal(rp->could_yield, false,
232 "rec %zu could-yield", rp - init_records);
233 ++rp;
234 }
235 zassert_equal(rp - init_records, 2U,
236 "bad pre-kernel count");
237
238 while (rp < rpe) {
239 zassert_equal(rp->is_in_isr, false,
240 "rec %zu isr", rp - init_records);
241 zassert_equal(rp->is_pre_kernel, false,
242 "rec %zu post-kernel", rp - init_records);
243 zassert_equal(rp->could_yield, true,
244 "rec %zu could-yield", rp - init_records);
245 ++rp;
246 }
247 }
248
249 /**
250 * @brief Test system device list query API.
251 *
252 * It queries the list of devices in the system, used to suspend or
253 * resume the devices in PM applications.
254 *
255 * @see z_device_get_all_static()
256 */
ZTEST(device,test_device_list)257 ZTEST(device, test_device_list)
258 {
259 struct device const *devices;
260 size_t devcount = z_device_get_all_static(&devices);
261 bool found = false;
262
263 zassert_true(devcount > 0, "Should have at least one static device");
264 zassert_not_null(devices);
265 for (size_t i = 0; i < devcount; i++) {
266 struct device const *dev = devices + i;
267
268 if (strcmp(dev->name, DUMMY_NOINIT) == 0) {
269 found = true;
270 break;
271 }
272 }
273 zassert_true(found, "%s should be present in static device list", DUMMY_NOINIT);
274 }
275
276 static int sys_init_counter;
277
init_fn(void)278 static int init_fn(void)
279 {
280 sys_init_counter++;
281 return 0;
282 }
283
284 SYS_INIT(init_fn, APPLICATION, 0);
285 SYS_INIT_NAMED(init1, init_fn, APPLICATION, 1);
286 SYS_INIT_NAMED(init2, init_fn, APPLICATION, 2);
287 SYS_INIT_NAMED(init3, init_fn, APPLICATION, 2);
288 SYS_INIT_NAMED(init4, init_fn, APPLICATION, 99);
289 SYS_INIT_NAMED(init5, init_fn, APPLICATION, 999);
290
ZTEST(device,test_sys_init_multiple)291 ZTEST(device, test_sys_init_multiple)
292 {
293 zassert_equal(sys_init_counter, 6, "");
294 }
295
296 /* this is for storing sequence during initialization */
297 extern int init_level_sequence[4];
298 extern int init_priority_sequence[4];
299 extern int init_sub_priority_sequence[3];
300 extern unsigned int seq_level_cnt;
301 extern unsigned int seq_priority_cnt;
302
303 /**
304 * @brief Test initialization level for device driver instances
305 *
306 * @details After the defined device instances have initialized, we check the
307 * sequence number that each driver stored during initialization. If the
308 * sequence of initial level stored is corresponding with our expectation, it
309 * means assigning the level for driver instance works.
310 *
311 * @ingroup kernel_device_tests
312 */
ZTEST(device,test_device_init_level)313 ZTEST(device, test_device_init_level)
314 {
315 bool seq_correct = true;
316
317 /* we check if the stored executing sequence for different level is
318 * correct, and it should be 1, 2, 3
319 */
320 for (int i = 0; i < 3; i++) {
321 if (init_level_sequence[i] != (i + 1)) {
322 seq_correct = false;
323 }
324 }
325
326 zassert_true((seq_correct == true),
327 "init sequence is not correct");
328 }
329
330 /**
331 * @brief Test initialization priorities for device driver instances
332 *
333 * @details After the defined device instances have initialized, we check the
334 * sequence number that each driver stored during initialization. If the
335 * sequence of initial priority stored is corresponding with our expectation, it
336 * means assigning the priority for driver instance works.
337 *
338 * @ingroup kernel_device_tests
339 */
ZTEST(device,test_device_init_priority)340 ZTEST(device, test_device_init_priority)
341 {
342 bool sequence_correct = true;
343
344 /* we check if the stored pexecuting sequence for priority is correct,
345 * and it should be 1, 2, 3, 4
346 */
347 for (int i = 0; i < 4; i++) {
348 if (init_priority_sequence[i] != (i + 1)) {
349 sequence_correct = false;
350 }
351 }
352
353 zassert_true((sequence_correct == true),
354 "init sequence is not correct");
355 }
356
357 /**
358 * @brief Test initialization sub-priorities for device driver instances
359 *
360 * @details After the defined device instances have initialized, we check the
361 * sequence number that each driver stored during initialization. If the
362 * sequence of initial priority stored is corresponding with our expectation, it
363 * means using the devicetree for sub-priority sorting works.
364 *
365 * @ingroup kernel_device_tests
366 */
ZTEST(device,test_device_init_sub_priority)367 ZTEST(device, test_device_init_sub_priority)
368 {
369 /* fakedomain_1 depends on fakedomain_0 which depends on fakedomain_2,
370 * therefore we require that the initialisation runs in the reverse order.
371 */
372 zassert_equal(init_sub_priority_sequence[0], 1, "");
373 zassert_equal(init_sub_priority_sequence[1], 2, "");
374 zassert_equal(init_sub_priority_sequence[2], 0, "");
375 }
376
377 /**
378 * @brief Test abstraction of device drivers with common functionalities
379 *
380 * @details Abstraction of device drivers with common functionalities
381 * shall be provided as an intermediate interface between applications
382 * and device drivers, where such interface is implemented by individual
383 * device drivers. We verify this by following step:
384
385 * 1. Define a subsystem api for drivers.
386 * 2. Define and create two driver instances.
387 * 3. Two drivers call the same subsystem API, and we verify that each
388 * driver instance will call their own implementations.
389 *
390 * @ingroup kernel_device_tests
391 */
ZTEST(device,test_abstraction_driver_common)392 ZTEST(device, test_abstraction_driver_common)
393 {
394 const struct device *dev;
395 int ret;
396 int foo = 2;
397 int bar = 1;
398 unsigned int baz = 0;
399
400 /* verify driver A API has called */
401 dev = device_get_binding(MY_DRIVER_A);
402 zassert_false((dev == NULL));
403
404 ret = abstract_do_this(dev, foo, bar);
405 zassert_true(ret == (foo + bar), "common API do_this fail");
406
407 abstract_do_that(dev, &baz);
408 zassert_true(baz == 1, "common API do_that fail");
409
410 /* verify driver B API has called */
411 dev = device_get_binding(MY_DRIVER_B);
412 zassert_false((dev == NULL));
413
414 ret = abstract_do_this(dev, foo, bar);
415 zassert_true(ret == (foo - bar), "common API do_this fail");
416
417 abstract_do_that(dev, &baz);
418 zassert_true(baz == 2, "common API do_that fail");
419 }
420
ZTEST(device,test_deferred_init)421 ZTEST(device, test_deferred_init)
422 {
423 int ret;
424
425 zassert_false(device_is_ready(FAKEDEFERDRIVER0));
426
427 ret = device_init(FAKEDEFERDRIVER0);
428 zassert_true(ret == 0);
429
430 zassert_true(device_is_ready(FAKEDEFERDRIVER0));
431 }
432
ZTEST(device,test_device_api)433 ZTEST(device, test_device_api)
434 {
435 const struct device *dev;
436
437 dev = device_get_binding(MY_DRIVER_A);
438 zexpect_true(DEVICE_API_IS(abstract, dev));
439
440 dev = device_get_binding(MY_DRIVER_B);
441 zexpect_true(DEVICE_API_IS(abstract, dev));
442
443 dev = device_get_binding(DUMMY_NOINIT);
444 zexpect_false(DEVICE_API_IS(abstract, dev));
445 }
446
ZTEST_USER(device,test_deferred_init_user)447 ZTEST_USER(device, test_deferred_init_user)
448 {
449 int ret;
450
451 zassert_false(device_is_ready(FAKEDEFERDRIVER1));
452
453 ret = device_init(FAKEDEFERDRIVER1);
454 zassert_true(ret == 0);
455
456 zassert_true(device_is_ready(FAKEDEFERDRIVER1));
457 }
458
ZTEST(device,test_deinit_not_supported)459 ZTEST(device, test_deinit_not_supported)
460 {
461 const struct device *dev = device_get_binding(DUMMY_NOINIT);
462 int ret;
463
464 zassert_not_null(dev);
465
466 ret = device_deinit(dev);
467 zassert_equal(ret, -ENOTSUP, "Expected -ENOTSUP for device_deinit when not supported");
468 }
469
dummy_deinit(const struct device * dev)470 static int dummy_deinit(const struct device *dev)
471 {
472 return 0;
473 }
474
475 /* A device with de-initialization function */
476 DEVICE_DEINIT_DEFINE(dummy_deinit, DUMMY_DEINIT, NULL, dummy_deinit, NULL, NULL, NULL, POST_KERNEL,
477 CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);
478
ZTEST(device,test_deinit_success_and_redeinit)479 ZTEST(device, test_deinit_success_and_redeinit)
480 {
481 const struct device *dev = device_get_binding(DUMMY_DEINIT);
482 int ret;
483
484 zassert_not_null(dev);
485
486 ret = device_deinit(dev);
487 zassert_equal(ret, 0, "device_deinit should succeed");
488
489 ret = device_deinit(dev);
490 zassert_equal(ret, -EPERM, "device_deinit should fail when not init or already deinit");
491 }
492
493 #ifdef CONFIG_DEVICE_DT_METADATA
494 DEVICE_DT_DEFINE(FAKEDRIVER0_NODEID, NULL, NULL, NULL, NULL, POST_KERNEL,
495 CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);
496
ZTEST(device,test_device_get_by_dt_nodelabel)497 ZTEST(device, test_device_get_by_dt_nodelabel)
498 {
499 const struct device *dev = DEVICE_DT_GET(FAKEDRIVER0_NODEID);
500
501 zassert_not_null(dev);
502
503 const struct device *valid = device_get_by_dt_nodelabel(FAKEDRIVER0_NODELABEL);
504
505 zassert_not_null(valid, "Valid DT nodelabel should return a device");
506
507 const struct device *invalid = device_get_by_dt_nodelabel("does_not_exist");
508
509 zassert_is_null(invalid, "Invalid DT nodelabel should return NULL");
510 }
511 #endif
512
user_setup(void)513 void *user_setup(void)
514 {
515 #ifdef CONFIG_USERSPACE
516 k_object_access_grant(FAKEDEFERDRIVER1, k_current_get());
517 #endif
518
519 return NULL;
520 }
521
522 /**
523 * @}
524 */
525
526 ZTEST_SUITE(device, NULL, user_setup, NULL, NULL, NULL);
527