// Copyright 2016 The Fuchsia Authors // Copyright (c) 2013-2015 Travis Geiselbrecht // // Use of this source code is governed by a MIT-style // license that can be found in the LICENSE file or at // https://opensource.org/licenses/MIT /* * Main entry point to the OS. Initializes modules in order and creates * the default thread. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void (*const __init_array_start[])(); extern void (*const __init_array_end[])(); static uint secondary_idle_thread_count; static int bootstrap2(void* arg); static void call_constructors() { for (void (*const* a)() = __init_array_start; a != __init_array_end; a++) (*a)(); } // called from arch code void lk_main() { // serial prints to console based on compile time switch dlog_bypass_init_early(); // get us into some sort of thread context thread_init_early(); // deal with any static constructors call_constructors(); // early arch stuff lk_primary_cpu_init_level(LK_INIT_LEVEL_EARLIEST, LK_INIT_LEVEL_ARCH_EARLY - 1); arch_early_init(); // do any super early platform initialization lk_primary_cpu_init_level(LK_INIT_LEVEL_ARCH_EARLY, LK_INIT_LEVEL_PLATFORM_EARLY - 1); platform_early_init(); // do any super early target initialization lk_primary_cpu_init_level(LK_INIT_LEVEL_PLATFORM_EARLY, LK_INIT_LEVEL_TARGET_EARLY - 1); target_early_init(); dprintf(INFO, "\nwelcome to Zircon\n\n"); dprintf(INFO, "KASLR: .text section at %p\n", __code_start); lk_primary_cpu_init_level(LK_INIT_LEVEL_TARGET_EARLY, LK_INIT_LEVEL_VM_PREHEAP - 1); dprintf(SPEW, "initializing vm pre-heap\n"); vm_init_preheap(); // bring up the kernel heap lk_primary_cpu_init_level(LK_INIT_LEVEL_VM_PREHEAP, LK_INIT_LEVEL_HEAP - 1); dprintf(SPEW, "initializing heap\n"); heap_init(); lk_primary_cpu_init_level(LK_INIT_LEVEL_HEAP, LK_INIT_LEVEL_VM - 1); dprintf(SPEW, "initializing vm\n"); vm_init(); // initialize the kernel lk_primary_cpu_init_level(LK_INIT_LEVEL_VM, LK_INIT_LEVEL_KERNEL - 1); dprintf(SPEW, "initializing kernel\n"); kernel_init(); lk_primary_cpu_init_level(LK_INIT_LEVEL_KERNEL, LK_INIT_LEVEL_THREADING - 1); // create a thread to complete system initialization dprintf(SPEW, "creating bootstrap completion thread\n"); thread_t* t = thread_create("bootstrap2", &bootstrap2, NULL, DEFAULT_PRIORITY); thread_set_cpu_affinity(t, cpu_num_to_mask(0)); thread_detach(t); thread_resume(t); // become the idle thread and enable interrupts to start the scheduler thread_become_idle(); } static int bootstrap2(void*) { dprintf(SPEW, "top of bootstrap2()\n"); lk_primary_cpu_init_level(LK_INIT_LEVEL_THREADING, LK_INIT_LEVEL_ARCH - 1); arch_init(); // initialize the rest of the platform dprintf(SPEW, "initializing platform\n"); lk_primary_cpu_init_level(LK_INIT_LEVEL_ARCH, LK_INIT_LEVEL_PLATFORM - 1); platform_init(); // initialize the target dprintf(SPEW, "initializing target\n"); lk_primary_cpu_init_level(LK_INIT_LEVEL_PLATFORM, LK_INIT_LEVEL_TARGET - 1); target_init(); dprintf(SPEW, "moving to last init level\n"); lk_primary_cpu_init_level(LK_INIT_LEVEL_TARGET, LK_INIT_LEVEL_LAST); return 0; } void lk_secondary_cpu_entry() { uint cpu = arch_curr_cpu_num(); if (cpu > secondary_idle_thread_count) { dprintf(CRITICAL, "Invalid secondary cpu num %u, SMP_MAX_CPUS %d, secondary_idle_thread_count %u\n", cpu, SMP_MAX_CPUS, secondary_idle_thread_count); return; } // secondary cpu initialize from threading level up. 0 to threading was handled in arch lk_init_level(LK_INIT_FLAG_SECONDARY_CPUS, LK_INIT_LEVEL_THREADING, LK_INIT_LEVEL_LAST); dprintf(SPEW, "entering scheduler on cpu %u\n", cpu); thread_secondary_cpu_entry(); } void lk_init_secondary_cpus(uint secondary_cpu_count) { if (secondary_cpu_count >= SMP_MAX_CPUS) { dprintf(CRITICAL, "Invalid secondary_cpu_count %u, SMP_MAX_CPUS %d\n", secondary_cpu_count, SMP_MAX_CPUS); secondary_cpu_count = SMP_MAX_CPUS - 1; } for (uint i = 0; i < secondary_cpu_count; i++) { thread_t* t = thread_create_idle_thread(i + 1); if (!t) { dprintf(CRITICAL, "could not allocate idle thread %u\n", i + 1); secondary_idle_thread_count = i; break; } } secondary_idle_thread_count = secondary_cpu_count; }