1 // Copyright 2017 The Fuchsia Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <dirent.h>
6 #include <errno.h>
7 #include <fcntl.h>
8 #include <stdbool.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 #include <string.h>
12 #include <sys/stat.h>
13 #include <unistd.h>
14
15 #include <fvm/fvm.h>
16 #include <fs-management/fvm.h>
17 #include <fs-management/mount.h>
18 #include <fs-management/ramdisk.h>
19 #include <zircon/device/block.h>
20 #include <zircon/device/device.h>
21 #include <zircon/device/ramdisk.h>
22
23 #include "filesystems.h"
24
25 const char* kTmpfsPath = "/fs-test-tmp";
26 const char* kMountPath = "/fs-test-tmp/mount";
27
28 bool use_real_disk = false;
29 block_info_t test_disk_info;
30 char test_disk_path[PATH_MAX];
31 char* ramdisk_path;
32 fs_info_t* test_info;
33
34 static char fvm_disk_path[PATH_MAX];
35
36 constexpr const char minfs_name[] = "minfs";
37 constexpr const char memfs_name[] = "memfs";
38 constexpr const char thinfs_name[] = "FAT";
39
40 const fsck_options_t test_fsck_options = {
41 .verbose = false,
42 .never_modify = true,
43 .always_modify = false,
44 .force = true,
45 };
46
47 #define FVM_DRIVER_LIB "/boot/driver/fvm.so"
48 #define STRLEN(s) sizeof(s) / sizeof((s)[0])
49
50 const test_disk_t default_test_disk = {
51 .block_count = TEST_BLOCK_COUNT_DEFAULT,
52 .block_size = TEST_BLOCK_SIZE_DEFAULT,
53 .slice_size = TEST_FVM_SLICE_SIZE_DEFAULT,
54 };
55
56 constexpr uint8_t kTestUniqueGUID[] = {
57 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
58 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
59 };
60
61 constexpr uint8_t kTestPartGUID[] = {
62 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
63 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
64 };
65
setup_fs_test(test_disk_t disk,fs_test_type_t test_class)66 void setup_fs_test(test_disk_t disk, fs_test_type_t test_class) {
67 int r = mkdir(kMountPath, 0755);
68 if ((r < 0) && errno != EEXIST) {
69 fprintf(stderr, "Could not create mount point for test filesystem\n");
70 exit(-1);
71 }
72
73 ramdisk_path = nullptr;
74
75 if (!use_real_disk) {
76 if (create_ramdisk(disk.block_size, disk.block_count, test_disk_path) != ZX_OK) {
77 fprintf(stderr, "[FAILED]: Could not create ramdisk for test\n");
78 exit(-1);
79 }
80
81 test_disk_info.block_size = static_cast<uint32_t>(disk.block_size);
82 test_disk_info.block_count = disk.block_count;
83 ramdisk_path = test_disk_path;
84 }
85
86 if (test_class == FS_TEST_FVM) {
87 int fd = open(test_disk_path, O_RDWR);
88 if (fd < 0) {
89 fprintf(stderr, "[FAILED]: Could not open test disk\n");
90 exit(-1);
91 }
92 if (fvm_init(fd, disk.slice_size) != ZX_OK) {
93 fprintf(stderr, "[FAILED]: Could not format disk with FVM\n");
94 exit(-1);
95 }
96 if (ioctl_device_bind(fd, FVM_DRIVER_LIB, STRLEN(FVM_DRIVER_LIB)) < 0) {
97 fprintf(stderr, "[FAILED]: Could not bind disk to FVM driver\n");
98 exit(-1);
99 }
100 snprintf(fvm_disk_path, sizeof(fvm_disk_path), "%s/fvm", test_disk_path);
101 if (wait_for_device(fvm_disk_path, ZX_SEC(3)) != ZX_OK) {
102 fprintf(stderr, "[FAILED]: FVM driver never appeared at %s\n", test_disk_path);
103 exit(-1);
104 }
105
106 // Open "fvm" driver
107 close(fd);
108 int fvm_fd;
109 if ((fvm_fd = open(fvm_disk_path, O_RDWR)) < 0) {
110 fprintf(stderr, "[FAILED]: Could not open FVM driver\n");
111 exit(-1);
112 }
113
114 alloc_req_t request;
115 memset(&request, 0, sizeof(request));
116 request.slice_count = 1;
117 strcpy(request.name, "fs-test-partition");
118 memcpy(request.type, kTestPartGUID, sizeof(request.type));
119 memcpy(request.guid, kTestUniqueGUID, sizeof(request.guid));
120
121 if ((fd = fvm_allocate_partition(fvm_fd, &request)) < 0) {
122 fprintf(stderr, "[FAILED]: Could not allocate FVM partition\n");
123 exit(-1);
124 }
125 close(fvm_fd);
126 close(fd);
127
128 if ((fd = open_partition(kTestUniqueGUID, kTestPartGUID, 0, test_disk_path)) < 0) {
129 fprintf(stderr, "[FAILED]: Could not locate FVM partition\n");
130 exit(-1);
131 }
132 close(fd);
133
134 // Restore the "fvm_disk_path" to the containing disk, so it can
135 // be destroyed when the test completes
136 fvm_disk_path[strlen(fvm_disk_path) - strlen("/fvm")] = 0;
137 ramdisk_path = fvm_disk_path;
138 }
139
140 if (test_info->mkfs(test_disk_path)) {
141 fprintf(stderr, "[FAILED]: Could not format disk (%s) for test\n", test_disk_path);
142 exit(-1);
143 }
144
145 if (test_info->mount(test_disk_path, kMountPath)) {
146 fprintf(stderr, "[FAILED]: Error mounting filesystem\n");
147 exit(-1);
148 }
149 }
150
teardown_fs_test(fs_test_type_t test_class)151 void teardown_fs_test(fs_test_type_t test_class) {
152 if (test_info->unmount(kMountPath)) {
153 fprintf(stderr, "[FAILED]: Error unmounting filesystem\n");
154 exit(-1);
155 }
156
157 if (test_info->fsck(test_disk_path)) {
158 fprintf(stderr, "[FAILED]: Filesystem fsck failed\n");
159 exit(-1);
160 }
161
162 if (test_class == FS_TEST_FVM) {
163 if (use_real_disk) {
164 if (fvm_destroy(fvm_disk_path) != ZX_OK) {
165 fprintf(stderr, "[FAILED]: Couldn't destroy FVM on test disk\n");
166 exit(-1);
167 }
168 }
169
170 // Move the test_disk_path back to the 'real' disk, rather than
171 // a partition within the FVM.
172 strcpy(test_disk_path, fvm_disk_path);
173 }
174
175 if (!use_real_disk) {
176 if (destroy_ramdisk(test_disk_path)) {
177 fprintf(stderr, "[FAILED]: Error destroying ramdisk\n");
178 exit(-1);
179 }
180 }
181 }
182
183 // FS-specific functionality:
184
185 template <const char* fs_name>
should_test_filesystem(void)186 bool should_test_filesystem(void) {
187 return !strcmp(filesystem_name_filter, "") || !strcmp(fs_name, filesystem_name_filter);
188 }
189
mkfs_memfs(const char * disk_path)190 int mkfs_memfs(const char* disk_path) {
191 return 0;
192 }
193
fsck_memfs(const char * disk_path)194 int fsck_memfs(const char* disk_path) {
195 return 0;
196 }
197
198 // TODO(smklein): Even this hacky solution has a hacky implementation, and
199 // should be replaced with a variation of "rm -r" when ready.
unlink_recursive(const char * path)200 static int unlink_recursive(const char* path) {
201 DIR* dir;
202 if ((dir = opendir(path)) == NULL) {
203 return errno;
204 }
205
206 struct dirent* de;
207 int r = 0;
208 while ((de = readdir(dir)) != NULL) {
209 if (!strcmp(de->d_name, ".") || !strcmp(de->d_name, ".."))
210 continue;
211
212 char tmp[PATH_MAX];
213 tmp[0] = 0;
214 size_t bytes_left = PATH_MAX - 1;
215 strncat(tmp, path, bytes_left);
216 bytes_left -= strlen(path);
217 strncat(tmp, "/", bytes_left);
218 bytes_left--;
219 strncat(tmp, de->d_name, bytes_left);
220 // At the moment, we don't have a great way of identifying what is /
221 // isn't a directory. Just try to open it as a directory, and return
222 // without an error if we're wrong.
223 if ((r = unlink_recursive(tmp)) < 0) {
224 break;
225 }
226 if ((r = unlink(tmp)) < 0) {
227 break;
228 }
229 }
230
231 closedir(dir);
232 return r;
233 }
234
235 // TODO(smklein): It would be cleaner to unmount the filesystem completely,
236 // and remount a fresh copy. However, a hackier (but currently working)
237 // solution involves recursively deleting all files in the mounted
238 // filesystem.
mount_memfs(const char * disk_path,const char * mount_path)239 int mount_memfs(const char* disk_path, const char* mount_path) {
240 struct stat st;
241 if (stat(kMountPath, &st)) {
242 if (mkdir(kMountPath, 0644) < 0) {
243 return -1;
244 }
245 } else if (!S_ISDIR(st.st_mode)) {
246 return -1;
247 }
248 int r = unlink_recursive(kMountPath);
249 return r;
250 }
251
unmount_memfs(const char * mount_path)252 int unmount_memfs(const char* mount_path) {
253 return unlink_recursive(kMountPath);
254 }
255
mkfs_common(const char * disk_path,disk_format_t fs_type)256 static int mkfs_common(const char* disk_path, disk_format_t fs_type) {
257 zx_status_t status;
258 if ((status = mkfs(disk_path, fs_type, launch_stdio_sync,
259 &default_mkfs_options)) != ZX_OK) {
260 fprintf(stderr, "Could not mkfs filesystem(%s)",
261 disk_format_string(fs_type));
262 return -1;
263 }
264 return 0;
265 }
266
fsck_common(const char * disk_path,disk_format_t fs_type)267 static int fsck_common(const char* disk_path, disk_format_t fs_type) {
268 zx_status_t status;
269 if ((status = fsck(disk_path, fs_type, &test_fsck_options,
270 launch_stdio_sync)) != ZX_OK) {
271 fprintf(stderr, "fsck on %s failed", disk_format_string(fs_type));
272 return -1;
273 }
274 return 0;
275 }
276
mount_common(const char * disk_path,const char * mount_path,disk_format_t fs_type)277 static int mount_common(const char* disk_path, const char* mount_path,
278 disk_format_t fs_type) {
279 int fd = open(disk_path, O_RDWR);
280
281 if (fd < 0) {
282 fprintf(stderr, "Could not open disk: %s\n", disk_path);
283 return -1;
284 }
285
286 // fd consumed by mount. By default, mount waits until the filesystem is
287 // ready to accept commands.
288 zx_status_t status;
289 if ((status = mount(fd, mount_path, fs_type, &default_mount_options,
290 launch_stdio_async)) != ZX_OK) {
291 fprintf(stderr, "Could not mount %s filesystem\n",
292 disk_format_string(fs_type));
293 return status;
294 }
295
296 return 0;
297 }
298
unmount_common(const char * mount_path)299 static int unmount_common(const char* mount_path) {
300 zx_status_t status = umount(mount_path);
301 if (status != ZX_OK) {
302 fprintf(stderr, "Failed to unmount filesystem\n");
303 return status;
304 }
305 return 0;
306 }
307
mkfs_minfs(const char * disk_path)308 int mkfs_minfs(const char* disk_path) {
309 return mkfs_common(disk_path, DISK_FORMAT_MINFS);
310 }
311
fsck_minfs(const char * disk_path)312 int fsck_minfs(const char* disk_path) {
313 return fsck_common(disk_path, DISK_FORMAT_MINFS);
314 }
315
mount_minfs(const char * disk_path,const char * mount_path)316 int mount_minfs(const char* disk_path, const char* mount_path) {
317 return mount_common(disk_path, mount_path, DISK_FORMAT_MINFS);
318 }
319
unmount_minfs(const char * mount_path)320 int unmount_minfs(const char* mount_path) {
321 return unmount_common(mount_path);
322 }
323
should_test_thinfs(void)324 bool should_test_thinfs(void) {
325 struct stat buf;
326 return (stat("/system/bin/thinfs", &buf) == 0) && should_test_filesystem<thinfs_name>();
327 }
328
mkfs_thinfs(const char * disk_path)329 int mkfs_thinfs(const char* disk_path) {
330 return mkfs_common(disk_path, DISK_FORMAT_FAT);
331 }
332
fsck_thinfs(const char * disk_path)333 int fsck_thinfs(const char* disk_path) {
334 return fsck_common(disk_path, DISK_FORMAT_FAT);
335 }
336
mount_thinfs(const char * disk_path,const char * mount_path)337 int mount_thinfs(const char* disk_path, const char* mount_path) {
338 return mount_common(disk_path, mount_path, DISK_FORMAT_FAT);
339 }
340
unmount_thinfs(const char * mount_path)341 int unmount_thinfs(const char* mount_path) {
342 return unmount_common(mount_path);
343 }
344
345 fs_info_t FILESYSTEMS[NUM_FILESYSTEMS] = {
346 {memfs_name,
347 should_test_filesystem<memfs_name>, mkfs_memfs, mount_memfs, unmount_memfs, fsck_memfs,
348 .can_be_mounted = false,
349 .can_mount_sub_filesystems = true,
350 .supports_hardlinks = true,
351 .supports_watchers = true,
352 .supports_create_by_vmo = true,
353 .supports_mmap = true,
354 .supports_resize = false,
355 .nsec_granularity = 1,
356 },
357 {minfs_name,
358 should_test_filesystem<minfs_name>, mkfs_minfs, mount_minfs, unmount_minfs, fsck_minfs,
359 .can_be_mounted = true,
360 .can_mount_sub_filesystems = true,
361 .supports_hardlinks = true,
362 .supports_watchers = true,
363 .supports_create_by_vmo = false,
364 .supports_mmap = false,
365 .supports_resize = true,
366 .nsec_granularity = 1,
367 },
368 {thinfs_name,
369 should_test_thinfs, mkfs_thinfs, mount_thinfs, unmount_thinfs, fsck_thinfs,
370 .can_be_mounted = true,
371 .can_mount_sub_filesystems = false,
372 .supports_hardlinks = false,
373 .supports_watchers = false,
374 .supports_create_by_vmo = false,
375 .supports_mmap = false,
376 .supports_resize = false,
377 .nsec_granularity = ZX_SEC(2),
378 },
379 };
380