1 /******************************************************************************
2 SPDX-License-Identifier: BSD-3-Clause
3
4 Copyright (c) 2001-2015, Intel Corporation
5 All rights reserved.
6
7 Redistribution and use in source and binary forms, with or without
8 modification, are permitted provided that the following conditions are met:
9
10 1. Redistributions of source code must retain the above copyright notice,
11 this list of conditions and the following disclaimer.
12
13 2. Redistributions in binary form must reproduce the above copyright
14 notice, this list of conditions and the following disclaimer in the
15 documentation and/or other materials provided with the distribution.
16
17 3. Neither the name of the Intel Corporation nor the names of its
18 contributors may be used to endorse or promote products derived from
19 this software without specific prior written permission.
20
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 POSSIBILITY OF SUCH DAMAGE.
32
33 ******************************************************************************/
34 /*$FreeBSD$*/
35
36
37 #include "e1000_api.h"
38
39
40 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
41 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
42 static void e1000_release_vf(struct e1000_hw *hw);
43 static s32 e1000_acquire_vf(struct e1000_hw *hw);
44 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
45 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
46 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
47 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
48 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
49 u16 *duplex);
50 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
51 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
52 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
53 static int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
54 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
55
56 /**
57 * e1000_init_phy_params_vf - Inits PHY params
58 * @hw: pointer to the HW structure
59 *
60 * Doesn't do much - there's no PHY available to the VF.
61 **/
e1000_init_phy_params_vf(struct e1000_hw * hw)62 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
63 {
64 DEBUGFUNC("e1000_init_phy_params_vf");
65 hw->phy.type = e1000_phy_vf;
66 hw->phy.ops.acquire = e1000_acquire_vf;
67 hw->phy.ops.release = e1000_release_vf;
68
69 return E1000_SUCCESS;
70 }
71
72 /**
73 * e1000_init_nvm_params_vf - Inits NVM params
74 * @hw: pointer to the HW structure
75 *
76 * Doesn't do much - there's no NVM available to the VF.
77 **/
e1000_init_nvm_params_vf(struct e1000_hw * hw)78 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
79 {
80 DEBUGFUNC("e1000_init_nvm_params_vf");
81 hw->nvm.type = e1000_nvm_none;
82 hw->nvm.ops.acquire = e1000_acquire_vf;
83 hw->nvm.ops.release = e1000_release_vf;
84
85 return E1000_SUCCESS;
86 }
87
88 /**
89 * e1000_init_mac_params_vf - Inits MAC params
90 * @hw: pointer to the HW structure
91 **/
e1000_init_mac_params_vf(struct e1000_hw * hw)92 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
93 {
94 struct e1000_mac_info *mac = &hw->mac;
95
96 DEBUGFUNC("e1000_init_mac_params_vf");
97
98 /* Set media type */
99 /*
100 * Virtual functions don't care what they're media type is as they
101 * have no direct access to the PHY, or the media. That is handled
102 * by the physical function driver.
103 */
104 hw->phy.media_type = e1000_media_type_unknown;
105
106 /* No ASF features for the VF driver */
107 mac->asf_firmware_present = FALSE;
108 /* ARC subsystem not supported */
109 mac->arc_subsystem_valid = FALSE;
110 /* Disable adaptive IFS mode so the generic funcs don't do anything */
111 mac->adaptive_ifs = FALSE;
112 /* VF's have no MTA Registers - PF feature only */
113 mac->mta_reg_count = 128;
114 /* VF's have no access to RAR entries */
115 mac->rar_entry_count = 1;
116
117 /* Function pointers */
118 /* link setup */
119 mac->ops.setup_link = e1000_setup_link_vf;
120 /* bus type/speed/width */
121 mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
122 /* reset */
123 mac->ops.reset_hw = e1000_reset_hw_vf;
124 /* hw initialization */
125 mac->ops.init_hw = e1000_init_hw_vf;
126 /* check for link */
127 mac->ops.check_for_link = e1000_check_for_link_vf;
128 /* link info */
129 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
130 /* multicast address update */
131 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
132 /* set mac address */
133 mac->ops.rar_set = e1000_rar_set_vf;
134 /* read mac address */
135 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
136
137
138 return E1000_SUCCESS;
139 }
140
141 /**
142 * e1000_init_function_pointers_vf - Inits function pointers
143 * @hw: pointer to the HW structure
144 **/
e1000_init_function_pointers_vf(struct e1000_hw * hw)145 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
146 {
147 DEBUGFUNC("e1000_init_function_pointers_vf");
148
149 hw->mac.ops.init_params = e1000_init_mac_params_vf;
150 hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
151 hw->phy.ops.init_params = e1000_init_phy_params_vf;
152 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
153 }
154
155 /**
156 * e1000_acquire_vf - Acquire rights to access PHY or NVM.
157 * @hw: pointer to the HW structure
158 *
159 * There is no PHY or NVM so we want all attempts to acquire these to fail.
160 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
161 * even want any SW to attempt to use them.
162 **/
e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG * hw)163 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
164 {
165 return -E1000_ERR_PHY;
166 }
167
168 /**
169 * e1000_release_vf - Release PHY or NVM
170 * @hw: pointer to the HW structure
171 *
172 * There is no PHY or NVM so we want all attempts to acquire these to fail.
173 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
174 * even want any SW to attempt to use them.
175 **/
e1000_release_vf(struct e1000_hw E1000_UNUSEDARG * hw)176 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
177 {
178 return;
179 }
180
181 /**
182 * e1000_setup_link_vf - Sets up link.
183 * @hw: pointer to the HW structure
184 *
185 * Virtual functions cannot change link.
186 **/
e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG * hw)187 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
188 {
189 DEBUGFUNC("e1000_setup_link_vf");
190
191 return E1000_SUCCESS;
192 }
193
194 /**
195 * e1000_get_bus_info_pcie_vf - Gets the bus info.
196 * @hw: pointer to the HW structure
197 *
198 * Virtual functions are not really on their own bus.
199 **/
e1000_get_bus_info_pcie_vf(struct e1000_hw * hw)200 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
201 {
202 struct e1000_bus_info *bus = &hw->bus;
203
204 DEBUGFUNC("e1000_get_bus_info_pcie_vf");
205
206 /* Do not set type PCI-E because we don't want disable master to run */
207 bus->type = e1000_bus_type_reserved;
208 bus->speed = e1000_bus_speed_2500;
209
210 return 0;
211 }
212
213 /**
214 * e1000_get_link_up_info_vf - Gets link info.
215 * @hw: pointer to the HW structure
216 * @speed: pointer to 16 bit value to store link speed.
217 * @duplex: pointer to 16 bit value to store duplex.
218 *
219 * Since we cannot read the PHY and get accurate link info, we must rely upon
220 * the status register's data which is often stale and inaccurate.
221 **/
e1000_get_link_up_info_vf(struct e1000_hw * hw,u16 * speed,u16 * duplex)222 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
223 u16 *duplex)
224 {
225 s32 status;
226
227 DEBUGFUNC("e1000_get_link_up_info_vf");
228
229 status = E1000_READ_REG(hw, E1000_STATUS);
230 if (status & E1000_STATUS_SPEED_1000) {
231 *speed = SPEED_1000;
232 DEBUGOUT("1000 Mbs, ");
233 } else if (status & E1000_STATUS_SPEED_100) {
234 *speed = SPEED_100;
235 DEBUGOUT("100 Mbs, ");
236 } else {
237 *speed = SPEED_10;
238 DEBUGOUT("10 Mbs, ");
239 }
240
241 if (status & E1000_STATUS_FD) {
242 *duplex = FULL_DUPLEX;
243 DEBUGOUT("Full Duplex\n");
244 } else {
245 *duplex = HALF_DUPLEX;
246 DEBUGOUT("Half Duplex\n");
247 }
248
249 return E1000_SUCCESS;
250 }
251
252 /**
253 * e1000_reset_hw_vf - Resets the HW
254 * @hw: pointer to the HW structure
255 *
256 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
257 * This is all the reset we can perform on a VF.
258 **/
e1000_reset_hw_vf(struct e1000_hw * hw)259 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
260 {
261 struct e1000_mbx_info *mbx = &hw->mbx;
262 u32 timeout = E1000_VF_INIT_TIMEOUT;
263 s32 ret_val = -E1000_ERR_MAC_INIT;
264 u32 ctrl, msgbuf[3];
265 u8 *addr = (u8 *)(&msgbuf[1]);
266
267 DEBUGFUNC("e1000_reset_hw_vf");
268
269 DEBUGOUT("Issuing a function level reset to MAC\n");
270 ctrl = E1000_READ_REG(hw, E1000_CTRL);
271 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
272
273 /* we cannot reset while the RSTI / RSTD bits are asserted */
274 while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
275 timeout--;
276 usec_delay(5);
277 }
278
279 if (timeout) {
280 /* mailbox timeout can now become active */
281 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
282
283 msgbuf[0] = E1000_VF_RESET;
284 mbx->ops.write_posted(hw, msgbuf, 1, 0);
285
286 msec_delay(10);
287
288 /* set our "perm_addr" based on info provided by PF */
289 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
290 if (!ret_val) {
291 if (msgbuf[0] == (E1000_VF_RESET |
292 E1000_VT_MSGTYPE_ACK))
293 memcpy(hw->mac.perm_addr, addr, 6);
294 else
295 ret_val = -E1000_ERR_MAC_INIT;
296 }
297 }
298
299 return ret_val;
300 }
301
302 /**
303 * e1000_init_hw_vf - Inits the HW
304 * @hw: pointer to the HW structure
305 *
306 * Not much to do here except clear the PF Reset indication if there is one.
307 **/
e1000_init_hw_vf(struct e1000_hw * hw)308 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
309 {
310 DEBUGFUNC("e1000_init_hw_vf");
311
312 /* attempt to set and restore our mac address */
313 e1000_rar_set_vf(hw, hw->mac.addr, 0);
314
315 return E1000_SUCCESS;
316 }
317
318 /**
319 * e1000_rar_set_vf - set device MAC address
320 * @hw: pointer to the HW structure
321 * @addr: pointer to the receive address
322 * @index receive address array register
323 **/
e1000_rar_set_vf(struct e1000_hw * hw,u8 * addr,u32 E1000_UNUSEDARG index)324 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
325 u32 E1000_UNUSEDARG index)
326 {
327 struct e1000_mbx_info *mbx = &hw->mbx;
328 u32 msgbuf[3];
329 u8 *msg_addr = (u8 *)(&msgbuf[1]);
330 s32 ret_val;
331
332 memset(msgbuf, 0, 12);
333 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
334 memcpy(msg_addr, addr, 6);
335 ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
336
337 if (!ret_val)
338 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
339
340 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
341
342 /* if nacked the address was rejected, use "perm_addr" */
343 if (!ret_val &&
344 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
345 e1000_read_mac_addr_vf(hw);
346
347 return E1000_SUCCESS;
348 }
349
350 /**
351 * e1000_hash_mc_addr_vf - Generate a multicast hash value
352 * @hw: pointer to the HW structure
353 * @mc_addr: pointer to a multicast address
354 *
355 * Generates a multicast address hash value which is used to determine
356 * the multicast filter table array address and new table value.
357 **/
e1000_hash_mc_addr_vf(struct e1000_hw * hw,u8 * mc_addr)358 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
359 {
360 u32 hash_value, hash_mask;
361 u8 bit_shift = 0;
362
363 DEBUGFUNC("e1000_hash_mc_addr_generic");
364
365 /* Register count multiplied by bits per register */
366 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
367
368 /*
369 * The bit_shift is the number of left-shifts
370 * where 0xFF would still fall within the hash mask.
371 */
372 while (hash_mask >> bit_shift != 0xFF)
373 bit_shift++;
374
375 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
376 (((u16) mc_addr[5]) << bit_shift)));
377
378 return hash_value;
379 }
380
e1000_write_msg_read_ack(struct e1000_hw * hw,u32 * msg,u16 size)381 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
382 u32 *msg, u16 size)
383 {
384 struct e1000_mbx_info *mbx = &hw->mbx;
385 u32 retmsg[E1000_VFMAILBOX_SIZE];
386 s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
387
388 if (!retval)
389 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
390 }
391
392 /**
393 * e1000_update_mc_addr_list_vf - Update Multicast addresses
394 * @hw: pointer to the HW structure
395 * @mc_addr_list: array of multicast addresses to program
396 * @mc_addr_count: number of multicast addresses to program
397 *
398 * Updates the Multicast Table Array.
399 * The caller must have a packed mc_addr_list of multicast addresses.
400 **/
e1000_update_mc_addr_list_vf(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)401 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
402 u8 *mc_addr_list, u32 mc_addr_count)
403 {
404 u32 msgbuf[E1000_VFMAILBOX_SIZE];
405 u16 *hash_list = (u16 *)&msgbuf[1];
406 u32 hash_value;
407 u32 i;
408
409 DEBUGFUNC("e1000_update_mc_addr_list_vf");
410
411 /* Each entry in the list uses 1 16 bit word. We have 30
412 * 16 bit words available in our HW msg buffer (minus 1 for the
413 * msg type). That's 30 hash values if we pack 'em right. If
414 * there are more than 30 MC addresses to add then punt the
415 * extras for now and then add code to handle more than 30 later.
416 * It would be unusual for a server to request that many multi-cast
417 * addresses except for in large enterprise network environments.
418 */
419
420 DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
421
422 if (mc_addr_count > 30) {
423 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
424 mc_addr_count = 30;
425 }
426
427 msgbuf[0] = E1000_VF_SET_MULTICAST;
428 msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
429
430 for (i = 0; i < mc_addr_count; i++) {
431 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
432 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
433 hash_list[i] = hash_value & 0x0FFF;
434 mc_addr_list += ETH_ADDR_LEN;
435 }
436
437 e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
438 }
439
440 /**
441 * e1000_vfta_set_vf - Set/Unset vlan filter table address
442 * @hw: pointer to the HW structure
443 * @vid: determines the vfta register and bit to set/unset
444 * @set: if TRUE then set bit, else clear bit
445 **/
e1000_vfta_set_vf(struct e1000_hw * hw,u16 vid,bool set)446 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
447 {
448 u32 msgbuf[2];
449
450 msgbuf[0] = E1000_VF_SET_VLAN;
451 msgbuf[1] = vid;
452 /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
453 if (set)
454 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
455
456 e1000_write_msg_read_ack(hw, msgbuf, 2);
457 }
458
459 /** e1000_rlpml_set_vf - Set the maximum receive packet length
460 * @hw: pointer to the HW structure
461 * @max_size: value to assign to max frame size
462 **/
e1000_rlpml_set_vf(struct e1000_hw * hw,u16 max_size)463 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
464 {
465 u32 msgbuf[2];
466
467 msgbuf[0] = E1000_VF_SET_LPE;
468 msgbuf[1] = max_size;
469
470 e1000_write_msg_read_ack(hw, msgbuf, 2);
471 }
472
473 /**
474 * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
475 * @hw: pointer to the HW structure
476 * @uni: boolean indicating unicast promisc status
477 * @multi: boolean indicating multicast promisc status
478 **/
e1000_promisc_set_vf(struct e1000_hw * hw,enum e1000_promisc_type type)479 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
480 {
481 struct e1000_mbx_info *mbx = &hw->mbx;
482 u32 msgbuf = E1000_VF_SET_PROMISC;
483 s32 ret_val;
484
485 switch (type) {
486 case e1000_promisc_multicast:
487 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
488 break;
489 case e1000_promisc_enabled:
490 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
491 /* FALLTHROUGH */
492 case e1000_promisc_unicast:
493 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
494 /* FALLTHROUGH */
495 case e1000_promisc_disabled:
496 break;
497 default:
498 return -E1000_ERR_MAC_INIT;
499 }
500
501 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
502
503 if (!ret_val)
504 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
505
506 if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
507 ret_val = -E1000_ERR_MAC_INIT;
508
509 return ret_val;
510 }
511
512 /**
513 * e1000_read_mac_addr_vf - Read device MAC address
514 * @hw: pointer to the HW structure
515 **/
e1000_read_mac_addr_vf(struct e1000_hw * hw)516 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
517 {
518 int i;
519
520 for (i = 0; i < ETH_ADDR_LEN; i++)
521 hw->mac.addr[i] = hw->mac.perm_addr[i];
522
523 return E1000_SUCCESS;
524 }
525
526 /**
527 * e1000_check_for_link_vf - Check for link for a virtual interface
528 * @hw: pointer to the HW structure
529 *
530 * Checks to see if the underlying PF is still talking to the VF and
531 * if it is then it reports the link state to the hardware, otherwise
532 * it reports link down and returns an error.
533 **/
e1000_check_for_link_vf(struct e1000_hw * hw)534 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
535 {
536 struct e1000_mbx_info *mbx = &hw->mbx;
537 struct e1000_mac_info *mac = &hw->mac;
538 s32 ret_val = E1000_SUCCESS;
539 u32 in_msg = 0;
540
541 DEBUGFUNC("e1000_check_for_link_vf");
542
543 /*
544 * We only want to run this if there has been a rst asserted.
545 * in this case that could mean a link change, device reset,
546 * or a virtual function reset
547 */
548
549 /* If we were hit with a reset or timeout drop the link */
550 if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
551 mac->get_link_status = TRUE;
552
553 if (!mac->get_link_status)
554 goto out;
555
556 /* if link status is down no point in checking to see if pf is up */
557 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
558 goto out;
559
560 /* if the read failed it could just be a mailbox collision, best wait
561 * until we are called again and don't report an error */
562 if (mbx->ops.read(hw, &in_msg, 1, 0))
563 goto out;
564
565 /* if incoming message isn't clear to send we are waiting on response */
566 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
567 /* message is not CTS and is NACK we have lost CTS status */
568 if (in_msg & E1000_VT_MSGTYPE_NACK)
569 ret_val = -E1000_ERR_MAC_INIT;
570 goto out;
571 }
572
573 /* at this point we know the PF is talking to us, check and see if
574 * we are still accepting timeout or if we had a timeout failure.
575 * if we failed then we will need to reinit */
576 if (!mbx->timeout) {
577 ret_val = -E1000_ERR_MAC_INIT;
578 goto out;
579 }
580
581 /* if we passed all the tests above then the link is up and we no
582 * longer need to check for link */
583 mac->get_link_status = FALSE;
584
585 out:
586 return ret_val;
587 }
588
589