1 // Copyright 2016 The Fuchsia Authors
2 // Copyright (c) 2009 Corey Tabaka
3 //
4 // Use of this source code is governed by a MIT-style
5 // license that can be found in the LICENSE file or at
6 // https://opensource.org/licenses/MIT
7
8 #include <sys/types.h>
9
10 #include <assert.h>
11 #include <debug.h>
12 #include <err.h>
13 #include <inttypes.h>
14 #include <reg.h>
15 #include <trace.h>
16
17 #include <arch/x86.h>
18 #include <arch/x86/apic.h>
19 #include <arch/x86/feature.h>
20 #include <arch/x86/pvclock.h>
21 #include <arch/x86/timer_freq.h>
22 #include <dev/interrupt.h>
23 #include <fbl/algorithm.h>
24 #include <kernel/cmdline.h>
25 #include <kernel/spinlock.h>
26 #include <kernel/thread.h>
27 #include <lib/fixed_point.h>
28 #include <lk/init.h>
29 #include <platform.h>
30 #include <platform/console.h>
31 #include <platform/pc.h>
32 #include <platform/pc/acpi.h>
33 #include <platform/pc/hpet.h>
34 #include <platform/pc/timer.h>
35 #include <platform/timer.h>
36 #include <pow2.h>
37 #include <zircon/time.h>
38 #include <zircon/types.h>
39
40 #include "platform_p.h"
41
42 // Current timer scheme:
43 // The HPET is used to calibrate the local APIC timers and the TSC. If the
44 // HPET is not present, we will fallback to calibrating using the PIT.
45 //
46 // For wall-time, we use the following mechanisms, in order of highest
47 // preference to least:
48 // 1) TSC: If the CPU advertises an invariant TSC, then we will use the TSC for
49 // tracking wall time in a tickless manner.
50 // 2) HPET: If there is an HPET present, we will use its count to track wall
51 // time in a tickless manner.
52 // 3) PIT: We will use periodic interrupts to update wall time.
53 //
54 // The local APICs are responsible for handling timer callbacks
55 // sent from the scheduler.
56
57 enum clock_source {
58 CLOCK_PIT,
59 CLOCK_HPET,
60 CLOCK_TSC,
61
62 CLOCK_COUNT
63 };
64
65 const char* clock_name[] = {
66 [CLOCK_PIT] = "PIT",
67 [CLOCK_HPET] = "HPET",
68 [CLOCK_TSC] = "TSC",
69 };
70 static_assert(fbl::count_of(clock_name) == CLOCK_COUNT, "");
71
72 // PIT time accounting info
73 static struct fp_32_64 us_per_pit;
74 static volatile uint64_t pit_ticks;
75 static uint16_t pit_divisor;
76 static uint32_t ns_per_pit_rounded_up;
77
78 // Whether or not we have an Invariant TSC (controls whether we use the PIT or
79 // not after initialization). The Invariant TSC is rate-invariant under P-, C-,
80 // and T-state transitions.
81 static bool invariant_tsc;
82 // Whether or not we have a Constant TSC (controls whether we bother calibrating
83 // the TSC). Constant TSC predates the Invariant TSC. The Constant TSC is
84 // rate-invariant under P-state transitions.
85 static bool constant_tsc;
86
87 static enum clock_source wall_clock;
88 static enum clock_source calibration_clock;
89
90 // APIC timer calibration values
91 static bool use_tsc_deadline;
92 static uint32_t apic_ticks_per_ms = 0;
93 static struct fp_32_64 apic_ticks_per_ns;
94 static uint8_t apic_divisor = 0;
95
96 // TSC timer calibration values
97 static uint64_t tsc_ticks_per_ms;
98 static struct fp_32_64 ns_per_tsc;
99 static struct fp_32_64 tsc_per_ns;
100 static uint32_t ns_per_tsc_rounded_up;
101
102 // HPET calibration values
103 static struct fp_32_64 ns_per_hpet;
104 static uint32_t ns_per_hpet_rounded_up;
105
106 #define INTERNAL_FREQ 1193182U
107 #define INTERNAL_FREQ_3X 3579546U
108
109 #define INTERNAL_FREQ_TICKS_PER_MS (INTERNAL_FREQ / 1000)
110
111 /* Maximum amount of time that can be program on the timer to schedule the next
112 * interrupt, in miliseconds */
113 #define MAX_TIMER_INTERVAL ZX_MSEC(55)
114
115 #define LOCAL_TRACE 0
116
current_time(void)117 zx_time_t current_time(void) {
118 zx_time_t time;
119
120 switch (wall_clock) {
121 case CLOCK_TSC: {
122 uint64_t tsc = rdtsc();
123 time = ticks_to_nanos(tsc);
124 break;
125 }
126 case CLOCK_HPET: {
127 uint64_t counter = hpet_get_value();
128 time = u64_mul_u64_fp32_64(counter, ns_per_hpet);
129 break;
130 }
131 case CLOCK_PIT: {
132 time = u64_mul_u64_fp32_64(pit_ticks, us_per_pit) * 1000;
133 break;
134 }
135 default:
136 panic("Invalid wall clock source\n");
137 }
138
139 return time;
140 }
141
142 // Round up t to a clock tick, so that when the APIC timer fires, the wall time
143 // will have elapsed.
discrete_time_roundup(zx_time_t t)144 static zx_time_t discrete_time_roundup(zx_time_t t) {
145 zx_duration_t value;
146 switch (wall_clock) {
147 case CLOCK_TSC: {
148 value = ns_per_tsc_rounded_up;
149 break;
150 }
151 case CLOCK_HPET: {
152 value = ns_per_hpet_rounded_up;
153 break;
154 }
155 case CLOCK_PIT: {
156 value = ns_per_pit_rounded_up;
157 break;
158 }
159 default:
160 panic("Invalid wall clock source\n");
161 }
162
163 return zx_time_add_duration(t, value);
164 }
165
ticks_per_second(void)166 zx_ticks_t ticks_per_second(void) {
167 return tsc_ticks_per_ms * 1000;
168 }
169
current_ticks(void)170 zx_ticks_t current_ticks(void) {
171 return rdtsc();
172 }
173
ticks_to_nanos(zx_ticks_t ticks)174 zx_time_t ticks_to_nanos(zx_ticks_t ticks) {
175 return u64_mul_u64_fp32_64(ticks, ns_per_tsc);
176 }
177
178 // The PIT timer will keep track of wall time if we aren't using the TSC
pit_timer_tick(void * arg)179 static interrupt_eoi pit_timer_tick(void* arg) {
180 pit_ticks += 1;
181 return IRQ_EOI_DEACTIVATE;
182 }
183
184 // The APIC timers will call this when they fire
platform_handle_apic_timer_tick(void)185 void platform_handle_apic_timer_tick(void) {
186 timer_tick(current_time());
187 }
188
set_pit_frequency(uint32_t frequency)189 static void set_pit_frequency(uint32_t frequency) {
190 uint32_t count, remainder;
191
192 /* figure out the correct pit_divisor for the desired frequency */
193 if (frequency <= 18) {
194 count = 0xffff;
195 } else if (frequency >= INTERNAL_FREQ) {
196 count = 1;
197 } else {
198 count = INTERNAL_FREQ_3X / frequency;
199 remainder = INTERNAL_FREQ_3X % frequency;
200
201 if (remainder >= INTERNAL_FREQ_3X / 2) {
202 count += 1;
203 }
204
205 count /= 3;
206 remainder = count % 3;
207
208 if (remainder >= 1) {
209 count += 1;
210 }
211 }
212
213 pit_divisor = count & 0xffff;
214
215 /*
216 * funky math that i don't feel like explaining. essentially 32.32 fixed
217 * point representation of the configured timer delta.
218 */
219 fp_32_64_div_32_32(&us_per_pit, 1000 * 1000 * 3 * count, INTERNAL_FREQ_3X);
220
221 // Add 1us to the PIT tick rate to deal with rounding
222 ns_per_pit_rounded_up = (u32_mul_u64_fp32_64(1, us_per_pit) + 1) * 1000;
223
224 //dprintf(DEBUG, "set_pit_frequency: pit_divisor=%04x\n", pit_divisor);
225
226 /*
227 * setup the Programmable Interval Timer
228 * timer 0, mode 2, binary counter, LSB followed by MSB
229 */
230 outp(I8253_CONTROL_REG, 0x34);
231 outp(I8253_DATA_REG, static_cast<uint8_t>(pit_divisor)); // LSB
232 outp(I8253_DATA_REG, static_cast<uint8_t>(pit_divisor >> 8)); // MSB
233 }
234
pit_calibration_cycle_preamble(uint16_t ms)235 static inline void pit_calibration_cycle_preamble(uint16_t ms) {
236 // Make the PIT run for
237 const uint16_t init_pic_count = static_cast<uint16_t>(INTERNAL_FREQ_TICKS_PER_MS * ms);
238 // Program PIT in the interrupt on terminal count configuration,
239 // this makes it count down and set the output high when it hits 0.
240 outp(I8253_CONTROL_REG, 0x30);
241 outp(I8253_DATA_REG, static_cast<uint8_t>(init_pic_count)); // LSB
242 }
243
pit_calibration_cycle(uint16_t ms)244 static inline void pit_calibration_cycle(uint16_t ms) {
245 // Make the PIT run for ms millis, see comments in the preamble
246 const uint16_t init_pic_count = static_cast<uint16_t>(INTERNAL_FREQ_TICKS_PER_MS * ms);
247 outp(I8253_DATA_REG, static_cast<uint8_t>(init_pic_count >> 8)); // MSB
248
249 uint8_t status = 0;
250 do {
251 // Send a read-back command that latches the status of ch0
252 outp(I8253_CONTROL_REG, 0xe2);
253 status = inp(I8253_DATA_REG);
254 // Wait for bit 7 (output) to go high and for bit 6 (null count) to go low
255 } while ((status & 0xc0) != 0x80);
256 }
257
pit_calibration_cycle_cleanup(void)258 static inline void pit_calibration_cycle_cleanup(void) {
259 // Stop the PIT by starting a mode change but not writing a counter
260 outp(I8253_CONTROL_REG, 0x38);
261 }
262
hpet_calibration_cycle_preamble(void)263 static inline void hpet_calibration_cycle_preamble(void) {
264 hpet_enable();
265 }
266
hpet_calibration_cycle(uint16_t ms)267 static inline void hpet_calibration_cycle(uint16_t ms) {
268 hpet_wait_ms(ms);
269 }
270
hpet_calibration_cycle_cleanup(void)271 static inline void hpet_calibration_cycle_cleanup(void) {
272 hpet_disable();
273 }
274
calibrate_apic_timer(void)275 static void calibrate_apic_timer(void) {
276 ASSERT(arch_ints_disabled());
277
278 const uint64_t apic_freq = x86_lookup_core_crystal_freq();
279 if (apic_freq != 0) {
280 ASSERT(apic_freq / 1000 <= UINT32_MAX);
281 apic_ticks_per_ms = static_cast<uint32_t>(apic_freq / 1000);
282 apic_divisor = 1;
283 fp_32_64_div_32_32(&apic_ticks_per_ns, apic_ticks_per_ms, 1000 * 1000);
284 printf("APIC frequency: %" PRIu32 " ticks/ms\n", apic_ticks_per_ms);
285 return;
286 }
287
288 printf("Could not find APIC frequency: Calibrating APIC with %s\n",
289 clock_name[calibration_clock]);
290
291 apic_divisor = 1;
292 outer:
293 while (apic_divisor != 0) {
294 uint32_t best_time[2] = {UINT32_MAX, UINT32_MAX};
295 const uint16_t duration_ms[2] = {2, 4};
296 for (int trial = 0; trial < 2; ++trial) {
297 for (int tries = 0; tries < 3; ++tries) {
298 switch (calibration_clock) {
299 case CLOCK_HPET:
300 hpet_calibration_cycle_preamble();
301 break;
302 case CLOCK_PIT:
303 pit_calibration_cycle_preamble(duration_ms[trial]);
304 break;
305 default:
306 PANIC_UNIMPLEMENTED;
307 }
308
309 // Setup APIC timer to count down with interrupt masked
310 zx_status_t status = apic_timer_set_oneshot(
311 UINT32_MAX,
312 apic_divisor,
313 true);
314 ASSERT(status == ZX_OK);
315
316 switch (calibration_clock) {
317 case CLOCK_HPET:
318 hpet_calibration_cycle(duration_ms[trial]);
319 break;
320 case CLOCK_PIT:
321 pit_calibration_cycle(duration_ms[trial]);
322 break;
323 default:
324 PANIC_UNIMPLEMENTED;
325 }
326
327 uint32_t apic_ticks = UINT32_MAX - apic_timer_current_count();
328 if (apic_ticks < best_time[trial]) {
329 best_time[trial] = apic_ticks;
330 }
331 LTRACEF("Calibration trial %d found %u ticks/ms\n",
332 tries, apic_ticks);
333
334 switch (calibration_clock) {
335 case CLOCK_HPET:
336 hpet_calibration_cycle_cleanup();
337 break;
338 case CLOCK_PIT:
339 pit_calibration_cycle_cleanup();
340 break;
341 default:
342 PANIC_UNIMPLEMENTED;
343 }
344 }
345
346 // If the APIC ran out of time every time, try again with a higher
347 // divisor
348 if (best_time[trial] == UINT32_MAX) {
349 apic_divisor = static_cast<uint8_t>(apic_divisor * 2);
350 goto outer;
351 }
352 }
353 apic_ticks_per_ms = (best_time[1] - best_time[0]) / (duration_ms[1] - duration_ms[0]);
354 fp_32_64_div_32_32(&apic_ticks_per_ns, apic_ticks_per_ms, 1000 * 1000);
355 break;
356 }
357 ASSERT(apic_divisor != 0);
358
359 printf("APIC timer calibrated: %" PRIu32 " ticks/ms, divisor %d\n",
360 apic_ticks_per_ms, apic_divisor);
361 }
362
calibrate_tsc_count(uint16_t duration_ms)363 static uint64_t calibrate_tsc_count(uint16_t duration_ms) {
364 uint64_t best_time = UINT64_MAX;
365
366 for (int tries = 0; tries < 3; ++tries) {
367 switch (calibration_clock) {
368 case CLOCK_HPET:
369 hpet_calibration_cycle_preamble();
370 break;
371 case CLOCK_PIT:
372 pit_calibration_cycle_preamble(duration_ms);
373 break;
374 default:
375 PANIC_UNIMPLEMENTED;
376 }
377
378 // Use CPUID to serialize the instruction stream
379 uint32_t _ignored;
380 cpuid(0, &_ignored, &_ignored, &_ignored, &_ignored);
381 uint64_t start = rdtsc();
382 cpuid(0, &_ignored, &_ignored, &_ignored, &_ignored);
383
384 switch (calibration_clock) {
385 case CLOCK_HPET:
386 hpet_calibration_cycle(duration_ms);
387 break;
388 case CLOCK_PIT:
389 pit_calibration_cycle(duration_ms);
390 break;
391 default:
392 PANIC_UNIMPLEMENTED;
393 }
394
395 cpuid(0, &_ignored, &_ignored, &_ignored, &_ignored);
396 zx_ticks_t end = rdtsc();
397 cpuid(0, &_ignored, &_ignored, &_ignored, &_ignored);
398
399 zx_ticks_t tsc_ticks = end - start;
400 if (tsc_ticks < best_time) {
401 best_time = tsc_ticks;
402 }
403 LTRACEF("Calibration trial %d found %" PRIu64 " ticks/ms\n",
404 tries, tsc_ticks);
405 switch (calibration_clock) {
406 case CLOCK_HPET:
407 hpet_calibration_cycle_cleanup();
408 break;
409 case CLOCK_PIT:
410 pit_calibration_cycle_cleanup();
411 break;
412 default:
413 PANIC_UNIMPLEMENTED;
414 }
415 }
416
417 return best_time;
418 }
419
calibrate_tsc(bool has_pvclock)420 static void calibrate_tsc(bool has_pvclock) {
421 ASSERT(arch_ints_disabled());
422
423 const uint64_t tsc_freq = has_pvclock ? pvclock_get_tsc_freq() : x86_lookup_tsc_freq();
424 if (tsc_freq != 0) {
425 tsc_ticks_per_ms = tsc_freq / 1000;
426 printf("TSC frequency: %" PRIu64 " ticks/ms\n", tsc_ticks_per_ms);
427 } else {
428 printf("Could not find TSC frequency: Calibrating TSC with %s\n",
429 clock_name[calibration_clock]);
430
431 uint32_t duration_ms[2] = {2, 4};
432 uint64_t best_time[2] = {
433 calibrate_tsc_count(static_cast<uint16_t>(duration_ms[0])),
434 calibrate_tsc_count(static_cast<uint16_t>(duration_ms[1]))};
435
436 while (best_time[0] >= best_time[1] && 2 * duration_ms[1] < MAX_TIMER_INTERVAL) {
437 duration_ms[0] = duration_ms[1];
438 duration_ms[1] *= 2;
439 best_time[0] = best_time[1];
440 best_time[1] = calibrate_tsc_count(static_cast<uint16_t>(duration_ms[1]));
441 }
442
443 ASSERT(best_time[0] < best_time[1]);
444
445 tsc_ticks_per_ms = (best_time[1] - best_time[0]) / (duration_ms[1] - duration_ms[0]);
446
447 printf("TSC calibrated: %" PRIu64 " ticks/ms\n", tsc_ticks_per_ms);
448 }
449
450 ASSERT(tsc_ticks_per_ms <= UINT32_MAX);
451 fp_32_64_div_32_32(&ns_per_tsc, 1000 * 1000, static_cast<uint32_t>(tsc_ticks_per_ms));
452 fp_32_64_div_32_32(&tsc_per_ns, static_cast<uint32_t>(tsc_ticks_per_ms), 1000 * 1000);
453 // Add 1ns to conservatively deal with rounding
454 ns_per_tsc_rounded_up = u32_mul_u64_fp32_64(1, ns_per_tsc) + 1;
455
456 LTRACEF("ns_per_tsc: %08x.%08x%08x\n", ns_per_tsc.l0, ns_per_tsc.l32, ns_per_tsc.l64);
457 }
458
pc_init_timer(uint level)459 static void pc_init_timer(uint level) {
460 const struct x86_model_info* cpu_model = x86_get_model();
461
462 constant_tsc = false;
463 if (x86_vendor == X86_VENDOR_INTEL) {
464 /* This condition taken from Intel 3B 17.15 (Time-Stamp Counter). This
465 * is the negation of the non-Constant TSC section, since the Constant
466 * TSC section is incomplete (the behavior is architectural going
467 * forward, and modern CPUs are not on the list). */
468 constant_tsc = !((cpu_model->family == 0x6 && cpu_model->model == 0x9) ||
469 (cpu_model->family == 0x6 && cpu_model->model == 0xd) ||
470 (cpu_model->family == 0xf && cpu_model->model < 0x3));
471 }
472 invariant_tsc = x86_feature_test(X86_FEATURE_INVAR_TSC);
473
474 bool has_pvclock = pvclock_is_present();
475 if (has_pvclock) {
476 zx_status_t status = pvclock_init();
477 if (status == ZX_OK) {
478 invariant_tsc = pvclock_is_stable();
479 } else {
480 has_pvclock = false;
481 }
482 }
483
484 bool has_hpet = hpet_is_present();
485 if (has_hpet) {
486 calibration_clock = CLOCK_HPET;
487 const uint64_t hpet_ms_rate = hpet_ticks_per_ms();
488 ASSERT(hpet_ms_rate <= UINT32_MAX);
489 printf("HPET frequency: %" PRIu64 " ticks/ms\n", hpet_ms_rate);
490 fp_32_64_div_32_32(&ns_per_hpet, 1000 * 1000, static_cast<uint32_t>(hpet_ms_rate));
491 // Add 1ns to conservatively deal with rounding
492 ns_per_hpet_rounded_up = u32_mul_u64_fp32_64(1, ns_per_hpet) + 1;
493 } else {
494 calibration_clock = CLOCK_PIT;
495 }
496
497 const char* force_wallclock = cmdline_get("kernel.wallclock");
498 bool use_invariant_tsc = invariant_tsc && (!force_wallclock || !strcmp(force_wallclock, "tsc"));
499
500 use_tsc_deadline = use_invariant_tsc &&
501 x86_feature_test(X86_FEATURE_TSC_DEADLINE);
502 if (!use_tsc_deadline) {
503 calibrate_apic_timer();
504 }
505
506 if (use_invariant_tsc) {
507 calibrate_tsc(has_pvclock);
508
509 // Program PIT in the software strobe configuration, but do not load
510 // the count. This will pause the PIT.
511 outp(I8253_CONTROL_REG, 0x38);
512 wall_clock = CLOCK_TSC;
513 } else {
514 if (constant_tsc || invariant_tsc) {
515 // Calibrate the TSC even though it's not as good as we want, so we
516 // can still let folks still use it for cheap timing.
517 calibrate_tsc(has_pvclock);
518 }
519
520 if (has_hpet && (!force_wallclock || !strcmp(force_wallclock, "hpet"))) {
521 wall_clock = CLOCK_HPET;
522 hpet_set_value(0);
523 hpet_enable();
524 } else {
525 if (force_wallclock && strcmp(force_wallclock, "pit")) {
526 panic("Could not satisfy kernel.wallclock choice\n");
527 }
528
529 wall_clock = CLOCK_PIT;
530
531 set_pit_frequency(1000); // ~1ms granularity
532
533 uint32_t irq = apic_io_isa_to_global(ISA_IRQ_PIT);
534 zx_status_t status = register_int_handler(irq, &pit_timer_tick, NULL);
535 DEBUG_ASSERT(status == ZX_OK);
536 unmask_interrupt(irq);
537 }
538 }
539
540 printf("timer features: constant_tsc %d invariant_tsc %d tsc_deadline %d\n",
541 constant_tsc, invariant_tsc, use_tsc_deadline);
542 printf("Using %s as wallclock\n", clock_name[wall_clock]);
543 }
544 LK_INIT_HOOK(timer, &pc_init_timer, LK_INIT_LEVEL_VM + 3);
545
platform_set_oneshot_timer(zx_time_t deadline)546 zx_status_t platform_set_oneshot_timer(zx_time_t deadline) {
547 DEBUG_ASSERT(arch_ints_disabled());
548
549 if (deadline < 0) {
550 deadline = 0;
551 }
552 deadline = discrete_time_roundup(deadline);
553 DEBUG_ASSERT(deadline > 0);
554
555 if (use_tsc_deadline) {
556 // Check if the deadline would overflow the TSC.
557 const uint64_t tsc_ticks_per_ns = tsc_ticks_per_ms / ZX_MSEC(1);
558 if (UINT64_MAX / deadline < tsc_ticks_per_ns) {
559 return ZX_ERR_INVALID_ARGS;
560 }
561
562 // We rounded up to the tick after above.
563 const uint64_t tsc_deadline = u64_mul_u64_fp32_64(deadline, tsc_per_ns);
564 LTRACEF("Scheduling oneshot timer: %" PRIu64 " deadline\n", tsc_deadline);
565 apic_timer_set_tsc_deadline(tsc_deadline, false /* unmasked */);
566 return ZX_OK;
567 }
568
569 const zx_time_t now = current_time();
570 if (now >= deadline) {
571 // Deadline has already passed. We still need to schedule a timer so that
572 // the interrupt fires.
573 LTRACEF("Scheduling oneshot timer for min duration\n");
574 return apic_timer_set_oneshot(1, 1, false /* unmasked */);
575 }
576 const zx_duration_t interval = zx_time_sub_time(deadline, now);
577 DEBUG_ASSERT(interval > 0);
578
579 uint64_t apic_ticks_needed = u64_mul_u64_fp32_64(interval, apic_ticks_per_ns);
580 if (apic_ticks_needed == 0) {
581 apic_ticks_needed = 1;
582 }
583
584 // Find the shift needed for this timeout, since count is 32-bit.
585 const uint highest_set_bit = log2_ulong_floor(apic_ticks_needed);
586 uint8_t extra_shift = (highest_set_bit <= 31) ? 0 : static_cast<uint8_t>(highest_set_bit - 31);
587 if (extra_shift > 8) {
588 extra_shift = 8;
589 }
590
591 uint32_t divisor = apic_divisor << extra_shift;
592 uint32_t count;
593 // If the divisor is too large, we're at our maximum timeout. Saturate the
594 // timer. It'll fire earlier than requested, but the scheduler will notice
595 // and ask us to set the timer up again.
596 if (divisor <= 128) {
597 count = (uint32_t)(apic_ticks_needed >> extra_shift);
598 DEBUG_ASSERT((apic_ticks_needed >> extra_shift) <= UINT32_MAX);
599 } else {
600 divisor = 128;
601 count = UINT32_MAX;
602 }
603
604 // Make sure we're not underflowing
605 if (count == 0) {
606 DEBUG_ASSERT(divisor == 1);
607 count = 1;
608 }
609
610 LTRACEF("Scheduling oneshot timer: %u count, %u div\n", count, divisor);
611 return apic_timer_set_oneshot(count, static_cast<uint8_t>(divisor), false /* unmasked */);
612 }
613
platform_stop_timer(void)614 void platform_stop_timer(void) {
615 /* Enable interrupt mode that will stop the decreasing counter of the PIT */
616 //outp(I8253_CONTROL_REG, 0x30);
617 apic_timer_stop();
618 }
619
platform_shutdown_timer(void)620 void platform_shutdown_timer(void) {
621 DEBUG_ASSERT(arch_ints_disabled());
622
623 // TODO(maniscalco): What should we do here? Anything?
624 }
625
626 static uint64_t saved_hpet_val;
pc_prep_suspend_timer(void)627 void pc_prep_suspend_timer(void) {
628 if (hpet_is_present()) {
629 saved_hpet_val = hpet_get_value();
630 }
631 }
632
pc_resume_timer(void)633 void pc_resume_timer(void) {
634 switch (wall_clock) {
635 case CLOCK_HPET:
636 hpet_set_value(saved_hpet_val);
637 hpet_enable();
638 break;
639 case CLOCK_PIT: {
640 set_pit_frequency(1000); // ~1ms granularity
641
642 uint32_t irq = apic_io_isa_to_global(ISA_IRQ_PIT);
643 unmask_interrupt(irq);
644 break;
645 }
646 default:
647 break;
648 }
649 }
650