1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #ifndef OPENSSL_HEADER_AEAD_H
16 #define OPENSSL_HEADER_AEAD_H
17 
18 #include <openssl/base.h>
19 
20 #if defined(__cplusplus)
21 extern "C" {
22 #endif
23 
24 
25 // Authenticated Encryption with Additional Data.
26 //
27 // AEAD couples confidentiality and integrity in a single primitive. AEAD
28 // algorithms take a key and then can seal and open individual messages. Each
29 // message has a unique, per-message nonce and, optionally, additional data
30 // which is authenticated but not included in the ciphertext.
31 //
32 // The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
33 // performs any precomputation needed to use |aead| with |key|. The length of
34 // the key, |key_len|, is given in bytes.
35 //
36 // The |tag_len| argument contains the length of the tags, in bytes, and allows
37 // for the processing of truncated authenticators. A zero value indicates that
38 // the default tag length should be used and this is defined as
39 // |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
40 // truncated tags increases an attacker's chance of creating a valid forgery.
41 // Be aware that the attacker's chance may increase more than exponentially as
42 // would naively be expected.
43 //
44 // When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
45 // passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
46 //
47 // With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
48 // operations are intended to meet the standard notions of privacy and
49 // authenticity for authenticated encryption. For formal definitions see
50 // Bellare and Namprempre, "Authenticated encryption: relations among notions
51 // and analysis of the generic composition paradigm," Lecture Notes in Computer
52 // Science B<1976> (2000), 531–545,
53 // http://www-cse.ucsd.edu/~mihir/papers/oem.html.
54 //
55 // When sealing messages, a nonce must be given. The length of the nonce is
56 // fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
57 // nonce must be unique for all messages with the same key*. This is critically
58 // important - nonce reuse may completely undermine the security of the AEAD.
59 // Nonces may be predictable and public, so long as they are unique. Uniqueness
60 // may be achieved with a simple counter or, if large enough, may be generated
61 // randomly. The nonce must be passed into the "open" operation by the receiver
62 // so must either be implicit (e.g. a counter), or must be transmitted along
63 // with the sealed message.
64 //
65 // The "seal" and "open" operations are atomic - an entire message must be
66 // encrypted or decrypted in a single call. Large messages may have to be split
67 // up in order to accommodate this. When doing so, be mindful of the need not to
68 // repeat nonces and the possibility that an attacker could duplicate, reorder
69 // or drop message chunks. For example, using a single key for a given (large)
70 // message and sealing chunks with nonces counting from zero would be secure as
71 // long as the number of chunks was securely transmitted. (Otherwise an
72 // attacker could truncate the message by dropping chunks from the end.)
73 //
74 // The number of chunks could be transmitted by prefixing it to the plaintext,
75 // for example. This also assumes that no other message would ever use the same
76 // key otherwise the rule that nonces must be unique for a given key would be
77 // violated.
78 //
79 // The "seal" and "open" operations also permit additional data to be
80 // authenticated via the |ad| parameter. This data is not included in the
81 // ciphertext and must be identical for both the "seal" and "open" call. This
82 // permits implicit context to be authenticated but may be empty if not needed.
83 //
84 // The "seal" and "open" operations may work in-place if the |out| and |in|
85 // arguments are equal. Otherwise, if |out| and |in| alias, input data may be
86 // overwritten before it is read. This situation will cause an error.
87 //
88 // The "seal" and "open" operations return one on success and zero on error.
89 
90 
91 // AEAD algorithms.
92 
93 // EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode.
94 //
95 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
96 // is specified to take a variable-length nonce, nonces with other lengths are
97 // effectively randomized, which means one must consider collisions. Unless
98 // implementing an existing protocol which has already specified incorrect
99 // parameters, only use 12-byte nonces.
100 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
101 
102 // EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode.
103 //
104 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
105 // is specified to take a variable-length nonce, nonces with other lengths are
106 // effectively randomized, which means one must consider collisions. Unless
107 // implementing an existing protocol which has already specified incorrect
108 // parameters, only use 12-byte nonces.
109 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
110 
111 // EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
112 // Poly1305 as described in RFC 7539.
113 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
114 
115 // EVP_aead_xchacha20_poly1305 is ChaCha20-Poly1305 with an extended nonce that
116 // makes random generation of nonces safe.
117 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_xchacha20_poly1305(void);
118 
119 // EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
120 // authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
121 // block counter, thus the maximum plaintext size is 64GB.
122 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
123 
124 // EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
125 // authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details.
126 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
127 
128 // EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
129 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
130 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
131 
132 // EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
133 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
134 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
135 
136 // EVP_aead_aes_128_ccm_bluetooth is AES-128-CCM with M=4 and L=2 (4-byte tags
137 // and 13-byte nonces), as decribed in the Bluetooth Core Specification v5.0,
138 // Volume 6, Part E, Section 1.
139 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void);
140 
141 // EVP_aead_aes_128_ccm_bluetooth_8 is AES-128-CCM with M=8 and L=2 (8-byte tags
142 // and 13-byte nonces), as used in the Bluetooth Mesh Networking Specification
143 // v1.0.
144 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void);
145 
146 // EVP_has_aes_hardware returns one if we enable hardware support for fast and
147 // constant-time AES-GCM.
148 OPENSSL_EXPORT int EVP_has_aes_hardware(void);
149 
150 
151 // Utility functions.
152 
153 // EVP_AEAD_key_length returns the length, in bytes, of the keys used by
154 // |aead|.
155 OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
156 
157 // EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
158 // for |aead|.
159 OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
160 
161 // EVP_AEAD_max_overhead returns the maximum number of additional bytes added
162 // by the act of sealing data with |aead|.
163 OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
164 
165 // EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
166 // is the largest value that can be passed as |tag_len| to
167 // |EVP_AEAD_CTX_init|.
168 OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
169 
170 
171 // AEAD operations.
172 
173 // An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
174 // and message-independent IV.
175 typedef struct evp_aead_ctx_st {
176   const EVP_AEAD *aead;
177   // aead_state is an opaque pointer to whatever state the AEAD needs to
178   // maintain.
179   void *aead_state;
180   // tag_len may contain the actual length of the authentication tag if it is
181   // known at initialization time.
182   uint8_t tag_len;
183 } EVP_AEAD_CTX;
184 
185 // EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
186 // any AEAD defined in this header.
187 #define EVP_AEAD_MAX_KEY_LENGTH 80
188 
189 // EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
190 // any AEAD defined in this header.
191 #define EVP_AEAD_MAX_NONCE_LENGTH 24
192 
193 // EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
194 // defined in this header.
195 #define EVP_AEAD_MAX_OVERHEAD 64
196 
197 // EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
198 // EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
199 // be used.
200 #define EVP_AEAD_DEFAULT_TAG_LENGTH 0
201 
202 // EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
203 // initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
204 // necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
205 // more uniform cleanup of |EVP_AEAD_CTX|.
206 OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
207 
208 // EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
209 // returns the |EVP_AEAD_CTX|, or NULL on error.
210 OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead,
211                                               const uint8_t *key,
212                                               size_t key_len, size_t tag_len);
213 
214 // EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
215 // |ctx|.
216 OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
217 
218 // EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
219 // argument is ignored and should be NULL. Authentication tags may be truncated
220 // by passing a size as |tag_len|. A |tag_len| of zero indicates the default
221 // tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
222 // readability.
223 //
224 // Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
225 // the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
226 // harmless to do so.
227 OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
228                                      const uint8_t *key, size_t key_len,
229                                      size_t tag_len, ENGINE *impl);
230 
231 // EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
232 // call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
233 // all zeros.
234 OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
235 
236 // EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
237 // authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
238 // returns one on success and zero otherwise.
239 //
240 // This function may be called concurrently with itself or any other seal/open
241 // function on the same |EVP_AEAD_CTX|.
242 //
243 // At most |max_out_len| bytes are written to |out| and, in order to ensure
244 // success, |max_out_len| should be |in_len| plus the result of
245 // |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
246 // actual number of bytes written.
247 //
248 // The length of |nonce|, |nonce_len|, must be equal to the result of
249 // |EVP_AEAD_nonce_length| for this AEAD.
250 //
251 // |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
252 // insufficient, zero will be returned. If any error occurs, |out| will be
253 // filled with zero bytes and |*out_len| set to zero.
254 //
255 // If |in| and |out| alias then |out| must be == |in|.
256 OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
257                                      size_t *out_len, size_t max_out_len,
258                                      const uint8_t *nonce, size_t nonce_len,
259                                      const uint8_t *in, size_t in_len,
260                                      const uint8_t *ad, size_t ad_len);
261 
262 // EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
263 // from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
264 // success and zero otherwise.
265 //
266 // This function may be called concurrently with itself or any other seal/open
267 // function on the same |EVP_AEAD_CTX|.
268 //
269 // At most |in_len| bytes are written to |out|. In order to ensure success,
270 // |max_out_len| should be at least |in_len|. On successful return, |*out_len|
271 // is set to the the actual number of bytes written.
272 //
273 // The length of |nonce|, |nonce_len|, must be equal to the result of
274 // |EVP_AEAD_nonce_length| for this AEAD.
275 //
276 // |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
277 // insufficient, zero will be returned. If any error occurs, |out| will be
278 // filled with zero bytes and |*out_len| set to zero.
279 //
280 // If |in| and |out| alias then |out| must be == |in|.
281 OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
282                                      size_t *out_len, size_t max_out_len,
283                                      const uint8_t *nonce, size_t nonce_len,
284                                      const uint8_t *in, size_t in_len,
285                                      const uint8_t *ad, size_t ad_len);
286 
287 // EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
288 // and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
289 // ciphertext to |out| and the authentication tag to |out_tag|. It returns one
290 // on success and zero otherwise.
291 //
292 // This function may be called concurrently with itself or any other seal/open
293 // function on the same |EVP_AEAD_CTX|.
294 //
295 // Exactly |in_len| bytes are written to |out|, and up to
296 // |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
297 // return, |*out_tag_len| is set to the actual number of bytes written to
298 // |out_tag|.
299 //
300 // |extra_in| may point to an additional plaintext input buffer if the cipher
301 // supports it. If present, |extra_in_len| additional bytes of plaintext are
302 // encrypted and authenticated, and the ciphertext is written (before the tag)
303 // to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
304 // |extra_in_len| bytes.
305 //
306 // The length of |nonce|, |nonce_len|, must be equal to the result of
307 // |EVP_AEAD_nonce_length| for this AEAD.
308 //
309 // |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
310 // |max_out_tag_len| is insufficient, zero will be returned. If any error
311 // occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
312 // set to zero.
313 //
314 // If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
315 // any other argument.
316 OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
317     const EVP_AEAD_CTX *ctx, uint8_t *out,
318     uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
319     const uint8_t *nonce, size_t nonce_len,
320     const uint8_t *in, size_t in_len,
321     const uint8_t *extra_in, size_t extra_in_len,
322     const uint8_t *ad, size_t ad_len);
323 
324 // EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
325 // and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
326 // authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
327 // plaintext to |out|. It returns one on success and zero otherwise.
328 //
329 // This function may be called concurrently with itself or any other seal/open
330 // function on the same |EVP_AEAD_CTX|.
331 //
332 // The length of |nonce|, |nonce_len|, must be equal to the result of
333 // |EVP_AEAD_nonce_length| for this AEAD.
334 //
335 // |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
336 // occurs, |out| will be filled with zero bytes.
337 //
338 // If |in| and |out| alias then |out| must be == |in|.
339 OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather(
340     const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
341     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
342     size_t in_tag_len, const uint8_t *ad, size_t ad_len);
343 
344 // EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
345 // not been set.
346 OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
347 
348 
349 // TLS-specific AEAD algorithms.
350 //
351 // These AEAD primitives do not meet the definition of generic AEADs. They are
352 // all specific to TLS and should not be used outside of that context. They must
353 // be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
354 // not be used concurrently. Any nonces are used as IVs, so they must be
355 // unpredictable. They only accept an |ad| parameter of length 11 (the standard
356 // TLS one with length omitted).
357 
358 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
359 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
360 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
361 
362 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
363 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
364 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void);
365 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void);
366 
367 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
368 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
369 
370 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
371 
372 // EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
373 // 1.2 nonce construction.
374 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void);
375 
376 // EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
377 // 1.2 nonce construction.
378 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void);
379 
380 // EVP_aead_aes_128_gcm_tls13 is AES-128 in Galois Counter Mode using the TLS
381 // 1.3 nonce construction.
382 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls13(void);
383 
384 // EVP_aead_aes_256_gcm_tls13 is AES-256 in Galois Counter Mode using the TLS
385 // 1.3 nonce construction.
386 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls13(void);
387 
388 
389 // Obscure functions.
390 
391 // evp_aead_direction_t denotes the direction of an AEAD operation.
392 enum evp_aead_direction_t {
393   evp_aead_open,
394   evp_aead_seal,
395 };
396 
397 // EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
398 // AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
399 // given direction.
400 OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
401     EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
402     size_t tag_len, enum evp_aead_direction_t dir);
403 
404 // EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
405 // sets |*out_iv| to point to that many bytes of the current IV. This is only
406 // meaningful for AEADs with implicit IVs (i.e. CBC mode in TLS 1.0).
407 //
408 // It returns one on success or zero on error.
409 OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
410                                        const uint8_t **out_iv, size_t *out_len);
411 
412 // EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
413 // |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
414 // on success or zero on error. |in_len| and |extra_in_len| must equal the
415 // arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|.
416 OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
417                                         size_t *out_tag_len,
418                                         const size_t in_len,
419                                         const size_t extra_in_len);
420 
421 
422 #if defined(__cplusplus)
423 }  // extern C
424 
425 #if !defined(BORINGSSL_NO_CXX)
426 extern "C++" {
427 
428 BSSL_NAMESPACE_BEGIN
429 
430 using ScopedEVP_AEAD_CTX =
431     internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
432                              EVP_AEAD_CTX_cleanup>;
433 
434 BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free)
435 
436 BSSL_NAMESPACE_END
437 
438 }  // extern C++
439 #endif
440 
441 #endif
442 
443 #endif  // OPENSSL_HEADER_AEAD_H
444