1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111 
112 #include <openssl/ex_data.h>
113 #include <openssl/stack.h>
114 #include <openssl/thread.h>
115 
116 #include <assert.h>
117 #include <string.h>
118 
119 #if !defined(__cplusplus)
120 #if defined(__GNUC__) && \
121     (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
122 // |alignas| and |alignof| were added in C11. GCC added support in version 4.8.
123 // Testing for __STDC_VERSION__/__cplusplus doesn't work because 4.7 already
124 // reports support for C11.
125 #define alignas(x) __attribute__ ((aligned (x)))
126 #define alignof(x) __alignof__ (x)
127 #elif defined(_MSC_VER)
128 #define alignas(x) __declspec(align(x))
129 #define alignof __alignof
130 #else
131 #include <stdalign.h>
132 #endif
133 #endif
134 
135 #if defined(OPENSSL_THREADS) && \
136     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
137 #include <pthread.h>
138 #define OPENSSL_PTHREADS
139 #endif
140 
141 #if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
142     defined(OPENSSL_WINDOWS)
143 #define OPENSSL_WINDOWS_THREADS
144 OPENSSL_MSVC_PRAGMA(warning(push, 3))
145 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))146 OPENSSL_MSVC_PRAGMA(warning(pop))
147 #endif
148 
149 #if defined(__cplusplus)
150 extern "C" {
151 #endif
152 
153 
154 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
155     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
156 // OPENSSL_cpuid_setup initializes the platform-specific feature cache.
157 void OPENSSL_cpuid_setup(void);
158 #endif
159 
160 
161 #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
162 #define BORINGSSL_HAS_UINT128
163 typedef __int128_t int128_t;
164 typedef __uint128_t uint128_t;
165 
166 // clang-cl supports __uint128_t but modulus and division don't work.
167 // https://crbug.com/787617.
168 #if !defined(_MSC_VER) || !defined(__clang__)
169 #define BORINGSSL_CAN_DIVIDE_UINT128
170 #endif
171 #endif
172 
173 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
174 
175 // Have a generic fall-through for different versions of C/C++.
176 #if defined(__cplusplus) && __cplusplus >= 201703L
177 #define OPENSSL_FALLTHROUGH [[fallthrough]]
178 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
179 #define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
180 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
181     __GNUC__ >= 7
182 #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
183 #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
184 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
185 #else // C++11 on gcc 6, and all other cases
186 #define OPENSSL_FALLTHROUGH
187 #endif
188 
189 // buffers_alias returns one if |a| and |b| alias and zero otherwise.
190 static inline int buffers_alias(const uint8_t *a, size_t a_len,
191                                 const uint8_t *b, size_t b_len) {
192   // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
193   // objects are undefined whereas pointer to integer conversions are merely
194   // implementation-defined. We assume the implementation defined it in a sane
195   // way.
196   uintptr_t a_u = (uintptr_t)a;
197   uintptr_t b_u = (uintptr_t)b;
198   return a_u + a_len > b_u && b_u + b_len > a_u;
199 }
200 
201 
202 // Constant-time utility functions.
203 //
204 // The following methods return a bitmask of all ones (0xff...f) for true and 0
205 // for false. This is useful for choosing a value based on the result of a
206 // conditional in constant time. For example,
207 //
208 // if (a < b) {
209 //   c = a;
210 // } else {
211 //   c = b;
212 // }
213 //
214 // can be written as
215 //
216 // crypto_word_t lt = constant_time_lt_w(a, b);
217 // c = constant_time_select_w(lt, a, b);
218 
219 // crypto_word_t is the type that most constant-time functions use. Ideally we
220 // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
221 // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
222 // bits. Since we want to be able to do constant-time operations on a
223 // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
224 // word length.
225 #if defined(OPENSSL_64_BIT)
226 typedef uint64_t crypto_word_t;
227 #elif defined(OPENSSL_32_BIT)
228 typedef uint32_t crypto_word_t;
229 #else
230 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
231 #endif
232 
233 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
234 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
235 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
236 #define CONSTTIME_FALSE_8 ((uint8_t)0)
237 
238 // constant_time_msb_w returns the given value with the MSB copied to all the
239 // other bits.
240 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
241   return 0u - (a >> (sizeof(a) * 8 - 1));
242 }
243 
244 // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
245 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
246                                                crypto_word_t b) {
247   // Consider the two cases of the problem:
248   //   msb(a) == msb(b): a < b iff the MSB of a - b is set.
249   //   msb(a) != msb(b): a < b iff the MSB of b is set.
250   //
251   // If msb(a) == msb(b) then the following evaluates as:
252   //   msb(a^((a^b)|((a-b)^a))) ==
253   //   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
254   //   msb(a^a^(a-b))           ==   (rearranging)
255   //   msb(a-b)                      (because ∀x. x^x == 0)
256   //
257   // Else, if msb(a) != msb(b) then the following evaluates as:
258   //   msb(a^((a^b)|((a-b)^a))) ==
259   //   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
260   //                                  represents a value s.t. msb(��) = 1)
261   //   msb(a^��)                 ==   (because ORing with 1 results in 1)
262   //   msb(b)
263   //
264   //
265   // Here is an SMT-LIB verification of this formula:
266   //
267   // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
268   //   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
269   // )
270   //
271   // (declare-fun a () (_ BitVec 32))
272   // (declare-fun b () (_ BitVec 32))
273   //
274   // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
275   // (check-sat)
276   // (get-model)
277   return constant_time_msb_w(a^((a^b)|((a-b)^a)));
278 }
279 
280 // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
281 // mask.
282 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
283   return (uint8_t)(constant_time_lt_w(a, b));
284 }
285 
286 // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
287 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
288                                                crypto_word_t b) {
289   return ~constant_time_lt_w(a, b);
290 }
291 
292 // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
293 // mask.
294 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
295   return (uint8_t)(constant_time_ge_w(a, b));
296 }
297 
298 // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
299 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
300   // Here is an SMT-LIB verification of this formula:
301   //
302   // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
303   //   (bvand (bvnot a) (bvsub a #x00000001))
304   // )
305   //
306   // (declare-fun a () (_ BitVec 32))
307   //
308   // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
309   // (check-sat)
310   // (get-model)
311   return constant_time_msb_w(~a & (a - 1));
312 }
313 
314 // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
315 // 8-bit mask.
316 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
317   return (uint8_t)(constant_time_is_zero_w(a));
318 }
319 
320 // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
321 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
322                                                crypto_word_t b) {
323   return constant_time_is_zero_w(a ^ b);
324 }
325 
326 // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
327 // mask.
328 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
329   return (uint8_t)(constant_time_eq_w(a, b));
330 }
331 
332 // constant_time_eq_int acts like |constant_time_eq_w| but works on int
333 // values.
334 static inline crypto_word_t constant_time_eq_int(int a, int b) {
335   return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
336 }
337 
338 // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
339 // mask.
340 static inline uint8_t constant_time_eq_int_8(int a, int b) {
341   return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
342 }
343 
344 // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
345 // 1s or all 0s (as returned by the methods above), the select methods return
346 // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
347 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
348                                                    crypto_word_t a,
349                                                    crypto_word_t b) {
350   return (mask & a) | (~mask & b);
351 }
352 
353 // constant_time_select_8 acts like |constant_time_select| but operates on
354 // 8-bit values.
355 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
356                                              uint8_t b) {
357   return (uint8_t)(constant_time_select_w(mask, a, b));
358 }
359 
360 // constant_time_select_int acts like |constant_time_select| but operates on
361 // ints.
362 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
363   return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
364                                       (crypto_word_t)(b)));
365 }
366 
367 
368 // Thread-safe initialisation.
369 
370 #if !defined(OPENSSL_THREADS)
371 typedef uint32_t CRYPTO_once_t;
372 #define CRYPTO_ONCE_INIT 0
373 #elif defined(OPENSSL_WINDOWS_THREADS)
374 typedef INIT_ONCE CRYPTO_once_t;
375 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
376 #elif defined(OPENSSL_PTHREADS)
377 typedef pthread_once_t CRYPTO_once_t;
378 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
379 #else
380 #error "Unknown threading library"
381 #endif
382 
383 // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
384 // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
385 // then they will block until |init| completes, but |init| will have only been
386 // called once.
387 //
388 // The |once| argument must be a |CRYPTO_once_t| that has been initialised with
389 // the value |CRYPTO_ONCE_INIT|.
390 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
391 
392 
393 // Reference counting.
394 
395 // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
396 #define CRYPTO_REFCOUNT_MAX 0xffffffff
397 
398 // CRYPTO_refcount_inc atomically increments the value at |*count| unless the
399 // value would overflow. It's safe for multiple threads to concurrently call
400 // this or |CRYPTO_refcount_dec_and_test_zero| on the same
401 // |CRYPTO_refcount_t|.
402 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
403 
404 // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
405 //   if it's zero, it crashes the address space.
406 //   if it's the maximum value, it returns zero.
407 //   otherwise, it atomically decrements it and returns one iff the resulting
408 //       value is zero.
409 //
410 // It's safe for multiple threads to concurrently call this or
411 // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
412 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
413 
414 
415 // Locks.
416 //
417 // Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
418 // structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
419 // a global lock. A global lock must be initialised to the value
420 // |CRYPTO_STATIC_MUTEX_INIT|.
421 //
422 // |CRYPTO_MUTEX| can appear in public structures and so is defined in
423 // thread.h as a structure large enough to fit the real type. The global lock is
424 // a different type so it may be initialized with platform initializer macros.
425 
426 #if !defined(OPENSSL_THREADS)
427 struct CRYPTO_STATIC_MUTEX {
428   char padding;  // Empty structs have different sizes in C and C++.
429 };
430 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
431 #elif defined(OPENSSL_WINDOWS_THREADS)
432 struct CRYPTO_STATIC_MUTEX {
433   SRWLOCK lock;
434 };
435 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
436 #elif defined(OPENSSL_PTHREADS)
437 struct CRYPTO_STATIC_MUTEX {
438   pthread_rwlock_t lock;
439 };
440 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
441 #else
442 #error "Unknown threading library"
443 #endif
444 
445 // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
446 // |CRYPTO_STATIC_MUTEX|.
447 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
448 
449 // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
450 // read lock, but none may have a write lock.
451 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
452 
453 // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
454 // of lock on it.
455 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
456 
457 // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
458 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
459 
460 // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
461 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
462 
463 // CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
464 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
465 
466 // CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
467 // have a read lock, but none may have a write lock. The |lock| variable does
468 // not need to be initialised by any function, but must have been statically
469 // initialised with |CRYPTO_STATIC_MUTEX_INIT|.
470 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
471     struct CRYPTO_STATIC_MUTEX *lock);
472 
473 // CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
474 // any type of lock on it.  The |lock| variable does not need to be initialised
475 // by any function, but must have been statically initialised with
476 // |CRYPTO_STATIC_MUTEX_INIT|.
477 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
478     struct CRYPTO_STATIC_MUTEX *lock);
479 
480 // CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
481 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
482     struct CRYPTO_STATIC_MUTEX *lock);
483 
484 // CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
485 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
486     struct CRYPTO_STATIC_MUTEX *lock);
487 
488 #if defined(__cplusplus)
489 extern "C++" {
490 
491 BSSL_NAMESPACE_BEGIN
492 
493 namespace internal {
494 
495 // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
496 template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
497 class MutexLockBase {
498  public:
499   explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
500     assert(mu_ != nullptr);
501     LockFunc(mu_);
502   }
503   ~MutexLockBase() { ReleaseFunc(mu_); }
504   MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
505   MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
506       delete;
507 
508  private:
509   CRYPTO_MUTEX *const mu_;
510 };
511 
512 }  // namespace internal
513 
514 using MutexWriteLock =
515     internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
516 using MutexReadLock =
517     internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
518 
519 BSSL_NAMESPACE_END
520 
521 }  // extern "C++"
522 #endif  // defined(__cplusplus)
523 
524 
525 // Thread local storage.
526 
527 // thread_local_data_t enumerates the types of thread-local data that can be
528 // stored.
529 typedef enum {
530   OPENSSL_THREAD_LOCAL_ERR = 0,
531   OPENSSL_THREAD_LOCAL_TEST,
532   NUM_OPENSSL_THREAD_LOCALS,
533 } thread_local_data_t;
534 
535 // thread_local_destructor_t is the type of a destructor function that will be
536 // called when a thread exits and its thread-local storage needs to be freed.
537 typedef void (*thread_local_destructor_t)(void *);
538 
539 // CRYPTO_get_thread_local gets the pointer value that is stored for the
540 // current thread for the given index, or NULL if none has been set.
541 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
542 
543 // CRYPTO_set_thread_local sets a pointer value for the current thread at the
544 // given index. This function should only be called once per thread for a given
545 // |index|: rather than update the pointer value itself, update the data that
546 // is pointed to.
547 //
548 // The destructor function will be called when a thread exits to free this
549 // thread-local data. All calls to |CRYPTO_set_thread_local| with the same
550 // |index| should have the same |destructor| argument. The destructor may be
551 // called with a NULL argument if a thread that never set a thread-local
552 // pointer for |index|, exits. The destructor may be called concurrently with
553 // different arguments.
554 //
555 // This function returns one on success or zero on error. If it returns zero
556 // then |destructor| has been called with |value| already.
557 OPENSSL_EXPORT int CRYPTO_set_thread_local(
558     thread_local_data_t index, void *value,
559     thread_local_destructor_t destructor);
560 
561 
562 // ex_data
563 
564 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
565 
566 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
567 
568 // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
569 // supports ex_data. It should defined as a static global within the module
570 // which defines that type.
571 typedef struct {
572   struct CRYPTO_STATIC_MUTEX lock;
573   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
574   // num_reserved is one if the ex_data index zero is reserved for legacy
575   // |TYPE_get_app_data| functions.
576   uint8_t num_reserved;
577 } CRYPTO_EX_DATA_CLASS;
578 
579 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
580 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
581     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
582 
583 // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
584 // it to |*out_index|. Each class of object should provide a wrapper function
585 // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
586 // zero otherwise.
587 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
588                                            int *out_index, long argl,
589                                            void *argp,
590                                            CRYPTO_EX_free *free_func);
591 
592 // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
593 // of object should provide a wrapper function.
594 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
595 
596 // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
597 // if no such index exists. Each class of object should provide a wrapper
598 // function.
599 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
600 
601 // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
602 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
603 
604 // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
605 // object of the given class.
606 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
607                                         void *obj, CRYPTO_EX_DATA *ad);
608 
609 
610 // Endianness conversions.
611 
612 #if defined(__GNUC__) && __GNUC__ >= 2
613 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
614   return __builtin_bswap32(x);
615 }
616 
617 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
618   return __builtin_bswap64(x);
619 }
620 #elif defined(_MSC_VER)
621 OPENSSL_MSVC_PRAGMA(warning(push, 3))
622 #include <intrin.h>
623 OPENSSL_MSVC_PRAGMA(warning(pop))
624 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
625 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
626   return _byteswap_ulong(x);
627 }
628 
629 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
630   return _byteswap_uint64(x);
631 }
632 #else
633 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
634   x = (x >> 16) | (x << 16);
635   x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
636   return x;
637 }
638 
639 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
640   return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
641 }
642 #endif
643 
644 
645 // Language bug workarounds.
646 //
647 // Most C standard library functions are undefined if passed NULL, even when the
648 // corresponding length is zero. This gives them (and, in turn, all functions
649 // which call them) surprising behavior on empty arrays. Some compilers will
650 // miscompile code due to this rule. See also
651 // https://www.imperialviolet.org/2016/06/26/nonnull.html
652 //
653 // These wrapper functions behave the same as the corresponding C standard
654 // functions, but behave as expected when passed NULL if the length is zero.
655 //
656 // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
657 
658 // C++ defines |memchr| as a const-correct overload.
659 #if defined(__cplusplus)
660 extern "C++" {
661 
662 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
663   if (n == 0) {
664     return NULL;
665   }
666 
667   return memchr(s, c, n);
668 }
669 
670 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
671   if (n == 0) {
672     return NULL;
673   }
674 
675   return memchr(s, c, n);
676 }
677 
678 }  // extern "C++"
679 #else  // __cplusplus
680 
681 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
682   if (n == 0) {
683     return NULL;
684   }
685 
686   return memchr(s, c, n);
687 }
688 
689 #endif  // __cplusplus
690 
691 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
692   if (n == 0) {
693     return 0;
694   }
695 
696   return memcmp(s1, s2, n);
697 }
698 
699 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
700   if (n == 0) {
701     return dst;
702   }
703 
704   return memcpy(dst, src, n);
705 }
706 
707 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
708   if (n == 0) {
709     return dst;
710   }
711 
712   return memmove(dst, src, n);
713 }
714 
715 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
716   if (n == 0) {
717     return dst;
718   }
719 
720   return memset(dst, c, n);
721 }
722 
723 #if defined(BORINGSSL_FIPS)
724 // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
725 // fails. It prevents any further cryptographic operations by the current
726 // process.
727 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
728 #endif
729 
730 #if defined(__cplusplus)
731 }  // extern C
732 #endif
733 
734 #endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H
735