1 // Copyright 2016 The Fuchsia Authors
2 //
3 // Use of this source code is governed by a MIT-style
4 // license that can be found in the LICENSE file or at
5 // https://opensource.org/licenses/MIT
6
7 #include <lib/debuglog.h>
8
9 #include <dev/udisplay.h>
10 #include <err.h>
11 #include <fbl/atomic.h>
12 #include <kernel/spinlock.h>
13 #include <kernel/thread.h>
14 #include <lib/crashlog.h>
15 #include <kernel/cmdline.h>
16 #include <lib/io.h>
17 #include <lib/version.h>
18 #include <lk/init.h>
19 #include <platform.h>
20 #include <stdint.h>
21 #include <string.h>
22 #include <vm/vm.h>
23 #include <zircon/types.h>
24
25 #define DLOG_SIZE (128u * 1024u)
26 #define DLOG_MASK (DLOG_SIZE - 1u)
27
28 static_assert((DLOG_SIZE & DLOG_MASK) == 0u, "must be power of two");
29 static_assert(DLOG_MAX_RECORD <= DLOG_SIZE, "wat");
30 static_assert((DLOG_MAX_RECORD & 3) == 0, "E_DONT_DO_THAT");
31
32 static uint8_t DLOG_DATA[DLOG_SIZE];
33
34 static dlog_t DLOG = {
35 .lock = SPIN_LOCK_INITIAL_VALUE,
36 .head = 0,
37 .tail = 0,
38 .data = DLOG_DATA,
39 .panic = false,
40 .event = EVENT_INITIAL_VALUE(DLOG.event, 0, EVENT_FLAG_AUTOUNSIGNAL),
41
42 .readers_lock = MUTEX_INITIAL_VALUE(DLOG.readers_lock),
43 .readers = LIST_INITIAL_VALUE(DLOG.readers),
44 };
45
46 static thread_t* notifier_thread;
47 static thread_t* dumper_thread;
48
49 // Used to request that notifier and dumper threads terminate.
50 static fbl::atomic_bool notifier_shutdown_requested;
51 static fbl::atomic_bool dumper_shutdown_requested;
52
53 // dlog_bypass_ will directly write to console. It also has the side effect of
54 // disabling uart Tx interrupts. So all serial console writes are polling.
55 static bool dlog_bypass_ = false;
56
57 // We need to preserve the compile time switch (ENABLE_KERNEL_LL_DEBUG), even
58 // though we add a kernel cmdline (kernel.bypass-debuglog), to bypass the debuglog.
59 // This is to allow very early prints in the kernel to go to the serial console.
60
61 // Called first thing in init, so very early printfs can go to serial console.
dlog_bypass_init_early(void)62 void dlog_bypass_init_early(void) {
63 #ifdef ENABLE_KERNEL_LL_DEBUG
64 dlog_bypass_ = true;
65 #endif
66 }
67
68 // Called after kernel cmdline options are parsed (in platform_early_init()).
69 // The compile switch (if enabled) overrides the kernel cmdline switch.
dlog_bypass_init(void)70 void dlog_bypass_init(void) {
71 if (dlog_bypass_ == false)
72 dlog_bypass_ = cmdline_get_bool("kernel.bypass-debuglog", false);
73 }
74
dlog_bypass(void)75 bool dlog_bypass(void) {
76 return dlog_bypass_;
77 }
78
79 // The debug log maintains a circular buffer of debug log records,
80 // consisting of a common header (dlog_header_t) followed by up
81 // to 224 bytes of textual log message. Records are aligned on
82 // uint32_t boundaries, so the header word which indicates the
83 // true size of the record and the space it takes in the fifo
84 // can always be read with a single uint32_t* read (the header
85 // or body may wrap but the initial header word never does).
86 //
87 // The ring buffer position is maintained by continuously incrementing
88 // head and tail pointers (type size_t, so uint64_t on 64bit systems),
89 //
90 // This allows readers to trivial compute if their local tail
91 // pointer has "fallen out" of the fifo (an entire fifo's worth
92 // of messages were written since they last tried to read) and then
93 // they can snap their tail to the global tail and restart
94 //
95 //
96 // Tail indicates the oldest message in the debug log to read
97 // from, Head indicates the next space in the debug log to write
98 // a new message to. They are clipped to the actual buffer by
99 // DLOG_MASK.
100 //
101 // T T
102 // [....XXXX....] [XX........XX]
103 // H H
104
105 #define ALIGN4(n) (((n) + 3) & (~3))
106
dlog_write(uint32_t flags,const void * data_ptr,size_t len)107 zx_status_t dlog_write(uint32_t flags, const void* data_ptr, size_t len) {
108 const uint8_t* ptr = static_cast<const uint8_t*>(data_ptr);
109 dlog_t* log = &DLOG;
110
111 if (len > DLOG_MAX_DATA) {
112 return ZX_ERR_OUT_OF_RANGE;
113 }
114
115 if (log->panic) {
116 return ZX_ERR_BAD_STATE;
117 }
118
119 // Our size "on the wire" must be a multiple of 4, so we know
120 // that worst case there will be room for a header skipping
121 // the last n bytes when the fifo wraps
122 size_t wiresize = DLOG_MIN_RECORD + ALIGN4(len);
123
124 // Prepare the record header before taking the lock
125 dlog_header_t hdr;
126 hdr.header = static_cast<uint32_t>(DLOG_HDR_SET(wiresize, DLOG_MIN_RECORD + len));
127 hdr.datalen = static_cast<uint16_t>(len);
128 hdr.flags = static_cast<uint16_t>(flags);
129 hdr.timestamp = current_time();
130 thread_t* t = get_current_thread();
131 if (t) {
132 hdr.pid = t->user_pid;
133 hdr.tid = t->user_tid;
134 } else {
135 hdr.pid = 0;
136 hdr.tid = 0;
137 }
138
139 spin_lock_saved_state_t state;
140 spin_lock_irqsave(&log->lock, state);
141
142 // Discard records at tail until there is enough
143 // space for the new record.
144 while ((log->head - log->tail) > (DLOG_SIZE - wiresize)) {
145 uint32_t header = *reinterpret_cast<uint32_t*>(log->data + (log->tail & DLOG_MASK));
146 log->tail += DLOG_HDR_GET_FIFOLEN(header);
147 }
148
149 size_t offset = (log->head & DLOG_MASK);
150
151 size_t fifospace = DLOG_SIZE - offset;
152
153 if (fifospace >= wiresize) {
154 // everything fits in one write, simple case!
155 memcpy(log->data + offset, &hdr, sizeof(hdr));
156 memcpy(log->data + offset + sizeof(hdr), ptr, len);
157 } else if (fifospace < sizeof(hdr)) {
158 // the wrap happens in the header
159 memcpy(log->data + offset, &hdr, fifospace);
160 memcpy(log->data, reinterpret_cast<uint8_t*>(&hdr) + fifospace, sizeof(hdr) - fifospace);
161 memcpy(log->data + (sizeof(hdr) - fifospace), ptr, len);
162 } else {
163 // the wrap happens in the data
164 memcpy(log->data + offset, &hdr, sizeof(hdr));
165 offset += sizeof(hdr);
166 fifospace -= sizeof(hdr);
167 memcpy(log->data + offset, ptr, fifospace);
168 memcpy(log->data, ptr + fifospace, len - fifospace);
169 }
170 log->head += wiresize;
171
172 // Need to check this before re-releasing the log lock, since we may
173 // re-enable interrupts while doing that. If interrupts are enabled when we
174 // make this check, we could see the following sequence of events between
175 // two CPUs and incorrectly conclude we are holding the thread lock:
176 // C2: Acquire thread_lock
177 // C1: Running this thread, evaluate spin_lock_holder_cpu(&thread_lock) -> C2
178 // C1: Context switch away
179 // C2: Release thread_lock
180 // C2: Context switch to this thread
181 // C2: Running this thread, evaluate arch_curr_cpu_num() -> C2
182 bool holding_thread_lock = spin_lock_holder_cpu(&thread_lock) == arch_curr_cpu_num();
183
184 spin_unlock_irqrestore(&log->lock, state);
185
186 [log, holding_thread_lock]() TA_NO_THREAD_SAFETY_ANALYSIS {
187 // if we happen to be called from within the global thread lock, use a
188 // special version of event signal
189 if (holding_thread_lock) {
190 event_signal_thread_locked(&log->event);
191 } else {
192 event_signal(&log->event, false);
193 }
194 }();
195
196
197 return ZX_OK;
198 }
199
200 // TODO: support reading multiple messages at a time
201 // TODO: filter with flags
dlog_read(dlog_reader_t * rdr,uint32_t flags,void * data_ptr,size_t len,size_t * _actual)202 zx_status_t dlog_read(dlog_reader_t* rdr, uint32_t flags, void* data_ptr,
203 size_t len, size_t* _actual) {
204 uint8_t* ptr = static_cast<uint8_t*>(data_ptr);
205 // must be room for worst-case read
206 if (len < DLOG_MAX_RECORD) {
207 return ZX_ERR_BUFFER_TOO_SMALL;
208 }
209
210 dlog_t* log = rdr->log;
211 zx_status_t status = ZX_ERR_SHOULD_WAIT;
212
213 spin_lock_saved_state_t state;
214 spin_lock_irqsave(&log->lock, state);
215
216 size_t rtail = rdr->tail;
217
218 // If the read-tail is not within the range of log-tail..log-head
219 // this reader has been lapped by a writer and we reset our read-tail
220 // to the current log-tail.
221 //
222 if ((log->head - log->tail) < (log->head - rtail)) {
223 rtail = log->tail;
224 }
225
226 if (rtail != log->head) {
227 size_t offset = (rtail & DLOG_MASK);
228 uint32_t header = *reinterpret_cast<uint32_t*>(log->data + offset);
229
230 size_t actual = DLOG_HDR_GET_READLEN(header);
231 size_t fifospace = DLOG_SIZE - offset;
232
233 if (fifospace >= actual) {
234 memcpy(ptr, log->data + offset, actual);
235 } else {
236 memcpy(ptr, log->data + offset, fifospace);
237 memcpy(ptr + fifospace, log->data, actual - fifospace);
238 }
239
240 *_actual = actual;
241 status = ZX_OK;
242
243 rtail += DLOG_HDR_GET_FIFOLEN(header);
244 }
245
246 rdr->tail = rtail;
247
248 spin_unlock_irqrestore(&log->lock, state);
249
250 return status;
251 }
252
dlog_reader_init(dlog_reader_t * rdr,void (* notify)(void *),void * cookie)253 void dlog_reader_init(dlog_reader_t* rdr, void (*notify)(void*), void* cookie) {
254 dlog_t* log = &DLOG;
255
256 rdr->log = log;
257 rdr->notify = notify;
258 rdr->cookie = cookie;
259
260 mutex_acquire(&log->readers_lock);
261 list_add_tail(&log->readers, &rdr->node);
262
263 bool do_notify = false;
264
265 spin_lock_saved_state_t state;
266 spin_lock_irqsave(&log->lock, state);
267 rdr->tail = log->tail;
268 do_notify = (log->tail != log->head);
269 spin_unlock_irqrestore(&log->lock, state);
270
271 // simulate notify callback for events that arrived
272 // before we were initialized
273 if (do_notify && notify) {
274 notify(cookie);
275 }
276
277 mutex_release(&log->readers_lock);
278 }
279
dlog_reader_destroy(dlog_reader_t * rdr)280 void dlog_reader_destroy(dlog_reader_t* rdr) {
281 dlog_t* log = rdr->log;
282
283 mutex_acquire(&log->readers_lock);
284 list_delete(&rdr->node);
285 mutex_release(&log->readers_lock);
286 }
287
288 // The debuglog notifier thread observes when the debuglog is
289 // written and calls the notify callback on any readers that
290 // have one so they can process new log messages.
debuglog_notifier(void * arg)291 static int debuglog_notifier(void* arg) {
292 dlog_t* log = &DLOG;
293
294 for (;;) {
295 if (notifier_shutdown_requested.load()) {
296 break;
297 }
298 event_wait(&log->event);
299
300 // notify readers that new log items were posted
301 mutex_acquire(&log->readers_lock);
302 dlog_reader_t* rdr;
303 list_for_every_entry (&log->readers, rdr, dlog_reader_t, node) {
304 if (rdr->notify) {
305 rdr->notify(rdr->cookie);
306 }
307 }
308 mutex_release(&log->readers_lock);
309 }
310 return ZX_OK;
311 }
312
313 // Common bottleneck between sys_debug_write() and debuglog_dumper()
314 // to reduce interleaved messages between the serial console and the
315 // debuglog drainer.
dlog_serial_write(const char * data,size_t len)316 void dlog_serial_write(const char* data, size_t len) {
317 if (dlog_bypass_ == true) {
318 // If LL DEBUG is enabled we take this path which uses a spinlock
319 // and prevents the direct writes from the kernel from interleaving
320 // with our output
321 __kernel_serial_write(data, len);
322 } else {
323 // Otherwise we can use a mutex and avoid time under spinlock
324 static mutex_t lock = MUTEX_INITIAL_VALUE(lock);
325 mutex_acquire(&lock);
326 platform_dputs_thread(data, len);
327 mutex_release(&lock);
328 }
329 }
330
331 // The debuglog dumper thread creates a reader to observe
332 // debuglog writes and dump them to the kernel consoles
333 // and kernel serial console.
debuglog_dumper_notify(void * cookie)334 static void debuglog_dumper_notify(void* cookie) {
335 event_t* event = reinterpret_cast<event_t*>(cookie);
336 event_signal(event, false);
337 }
338
339 static event_t dumper_event = EVENT_INITIAL_VALUE(dumper_event, 0, EVENT_FLAG_AUTOUNSIGNAL);
340
debuglog_dumper(void * arg)341 static int debuglog_dumper(void* arg) {
342 // assembly buffer with room for log text plus header text
343 char tmp[DLOG_MAX_DATA + 128];
344
345 struct {
346 dlog_header_t hdr;
347 char data[DLOG_MAX_DATA + 1];
348 } rec;
349
350 dlog_reader_t reader;
351 dlog_reader_init(&reader, debuglog_dumper_notify, &dumper_event);
352
353 for (;;) {
354 if (dumper_shutdown_requested.load()) {
355 break;
356 }
357 event_wait(&dumper_event);
358
359 // dump records to kernel console
360 size_t actual;
361 while (dlog_read(&reader, 0, &rec, DLOG_MAX_RECORD, &actual) == ZX_OK) {
362 if (rec.hdr.datalen && (rec.data[rec.hdr.datalen - 1] == '\n')) {
363 rec.data[rec.hdr.datalen - 1] = 0;
364 } else {
365 rec.data[rec.hdr.datalen] = 0;
366 }
367 int n;
368 n = snprintf(tmp, sizeof(tmp), "[%05d.%03d] %05" PRIu64 ".%05" PRIu64 "> %s\n",
369 (int)(rec.hdr.timestamp / ZX_SEC(1)),
370 (int)((rec.hdr.timestamp / ZX_MSEC(1)) % 1000ULL),
371 rec.hdr.pid, rec.hdr.tid, rec.data);
372 if (n > (int)sizeof(tmp)) {
373 n = sizeof(tmp);
374 }
375 __kernel_console_write(tmp, n);
376 dlog_serial_write(tmp, n);
377 }
378 }
379
380 return 0;
381 }
382
print_mmap(uintptr_t bias,void * begin,void * end,const char * perm)383 static void print_mmap(uintptr_t bias, void* begin, void* end, const char* perm) {
384 uintptr_t start = reinterpret_cast<uintptr_t>(begin);
385 size_t size = (uintptr_t)end - start;
386 dprintf(INFO, "{{{mmap:%#lx:%#lx:load:0:%s:%#lx}}}\n", start, size, perm, start + bias);
387 }
388
dlog_bluescreen_init(void)389 void dlog_bluescreen_init(void) {
390 // if we're panicing, stop processing log writes
391 // they'll fail over to kernel console and serial
392 DLOG.panic = true;
393
394 udisplay_bind_gfxconsole();
395
396 // replay debug log?
397
398 dprintf(INFO, "\nZIRCON KERNEL PANIC\n\n");
399 dprintf(INFO, "UPTIME: %" PRIi64 "ms\n", current_time() / ZX_MSEC(1));
400 dprintf(INFO, "BUILDID %s\n\n", version.buildid);
401
402 // Log the ELF build ID in the format the symbolizer scripts understand.
403 if (version.elf_build_id[0] != '\0') {
404 uintptr_t bias = KERNEL_BASE - reinterpret_cast<uintptr_t>(__code_start);
405 dprintf(INFO, "{{{module:0:kernel:elf:%s}}}\n", version.elf_build_id);
406 // These four mappings match the mappings printed by vm_init().
407 print_mmap(bias, __code_start, __code_end, "rx");
408 print_mmap(bias, __rodata_start, __rodata_end, "r");
409 print_mmap(bias, __data_start, __data_end, "rw");
410 print_mmap(bias, __bss_start, _end, "rw");
411 dprintf(INFO, "dso: id=%s base=%#lx name=zircon.elf\n",
412 version.elf_build_id, (uintptr_t)__code_start);
413 }
414
415 crashlog.base_address = (uintptr_t)__code_start;
416 }
417
dlog_shutdown(void)418 void dlog_shutdown(void) {
419 DEBUG_ASSERT(!arch_ints_disabled());
420
421 dprintf(INFO, "Shutting down debuglog\n");
422
423 // Limit how long we wait for the threads to terminate.
424 const zx_time_t deadline = current_time() + ZX_SEC(5);
425
426 // Shutdown the notifier thread first. Ordering is important because the notifier thread is
427 // responsible for passing log records to the dumper.
428 notifier_shutdown_requested.store(true);
429 event_signal(&DLOG.event, false);
430 if (notifier_thread != nullptr) {
431 zx_status_t status = thread_join(notifier_thread, nullptr, deadline);
432 if (status != ZX_OK) {
433 dprintf(INFO, "Failed to join notifier thread: %d\n", status);
434 }
435 notifier_thread = nullptr;
436 }
437
438 dumper_shutdown_requested.store(true);
439 event_signal(&dumper_event, false);
440 if (dumper_thread != nullptr) {
441 zx_status_t status = thread_join(dumper_thread, nullptr, deadline);
442 if (status != ZX_OK) {
443 dprintf(INFO, "Failed to join dumper thread: %d\n", status);
444 }
445 dumper_thread = nullptr;
446 }
447 }
448
dlog_init_hook(uint level)449 static void dlog_init_hook(uint level) {
450 DEBUG_ASSERT(notifier_thread == nullptr);
451 DEBUG_ASSERT(dumper_thread == nullptr);
452
453 if ((notifier_thread = thread_create("debuglog-notifier", debuglog_notifier, NULL,
454 HIGH_PRIORITY - 1)) != NULL) {
455 thread_resume(notifier_thread);
456 }
457
458 if (platform_serial_enabled() || platform_early_console_enabled()) {
459 if ((dumper_thread = thread_create("debuglog-dumper", debuglog_dumper, NULL,
460 HIGH_PRIORITY - 2)) != NULL) {
461 thread_resume(dumper_thread);
462 }
463 }
464 }
465
466 LK_INIT_HOOK(debuglog, dlog_init_hook, LK_INIT_LEVEL_THREADING - 1);
467